Attempt at making a bloxel game in Zig using Mach and Flecs
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

324 lines
12 KiB

9 months ago
const std = @import("std");
const core = @import("mach-core");
const gpu = core.gpu;
9 months ago
const zm = @import("zmath");
const vec = zm.f32x4;
const Mat = zm.Mat;
/// Holds information about how a perticular scene should be rendered.
const SceneUniformBuffer = struct {
view_proj_matrix: zm.Mat,
};
/// Holds information about where and how an object should be rendered.
const ObjectUniformBuffer = struct {
model_matrix: zm.Mat,
9 months ago
color: [3]f32,
};
/// Describes the layout of each vertex that a primitive is made of.
const VertexData = struct {
position: [3]f32,
};
/// Contains the data to render a primitive (3D shape or model).
const PrimitiveData = struct {
/// Vertices describe the "points" that a primitive is made out of.
/// This buffer is of type `[]VertexData`.
vertex_buffer: *gpu.Buffer,
vertex_count: u32,
/// Indices describe what vertices make up the triangles in a primitive.
/// This buffer is of type `[]u32`.
index_buffer: *gpu.Buffer,
index_count: u32,
// For example, `vertex_buffer` may have 4 points defining a square, but
// since it needs to be rendered using 2 triangles, `index_buffer` will
// contain 6 entries, `0, 1, 2` and `3, 2, 1` making up one triangle each.
};
pub const App = @This();
app_timer: core.Timer,
title_timer: core.Timer,
pipeline: *gpu.RenderPipeline,
scene_uniform_buffer: *gpu.Buffer,
scene_bind_group: *gpu.BindGroup,
object_uniform_buffers: [3]*gpu.Buffer,
object_bind_groups: [3]*gpu.BindGroup,
object_primitive_indices: [3]usize,
primitives: [2]PrimitiveData,
pub fn init(app: *App) !void {
try core.init(.{});
9 months ago
app.app_timer = try core.Timer.start();
app.title_timer = try core.Timer.start();
const shader_module = core.device.createShaderModuleWGSL("shader.wgsl", @embedFile("shader.wgsl"));
defer shader_module.release();
9 months ago
// Set up rendering pipeline.
app.pipeline = core.device.createRenderPipeline(&.{
.vertex = gpu.VertexState.init(.{
.module = shader_module,
.entry_point = "vertex_main",
9 months ago
.buffers = &.{
gpu.VertexBufferLayout.init(.{
.array_stride = @sizeOf(VertexData),
.step_mode = .vertex,
.attributes = &.{
.{ .format = .float32x3, .shader_location = 0, .offset = @offsetOf(VertexData, "position") },
},
}),
},
}),
.fragment = &gpu.FragmentState.init(.{
.module = shader_module,
.entry_point = "frag_main",
.targets = &.{.{ .format = core.descriptor.format }},
}),
.primitive = .{
.topology = .triangle_list,
.front_face = .ccw,
.cull_mode = .back,
},
9 months ago
});
// Set up uniform buffers and bind groups.
// The "scene" uniform contains information for each rendered scene.
app.scene_uniform_buffer = core.device.createBuffer(&.{
.usage = .{ .copy_dst = true, .uniform = true },
.size = @sizeOf(SceneUniformBuffer),
.mapped_at_creation = .false,
});
// "Bind groups" are used to associate data from buffers with shader parameters.
// So for example the `scene_bind_group` is accessible via `scene` in our shader.
// Essentially, buffer = data, and bind group = binding parameter to that data.
app.scene_bind_group = core.device.createBindGroup(
&gpu.BindGroup.Descriptor.init(.{
.layout = app.pipeline.getBindGroupLayout(0),
.entries = &.{
gpu.BindGroup.Entry.buffer(0, app.scene_uniform_buffer, 0, @sizeOf(SceneUniformBuffer)),
},
}),
);
9 months ago
// The "object" uniforms contain information about how to render each object in a scene.
for (0..3) |i| {
app.object_uniform_buffers[i] = core.device.createBuffer(&.{
.usage = .{ .copy_dst = true, .uniform = true },
.size = @sizeOf(ObjectUniformBuffer),
.mapped_at_creation = .false,
});
app.object_bind_groups[i] = core.device.createBindGroup(
&gpu.BindGroup.Descriptor.init(.{
.layout = app.pipeline.getBindGroupLayout(1),
.entries = &.{
gpu.BindGroup.Entry.buffer(0, app.object_uniform_buffers[i], 0, @sizeOf(ObjectUniformBuffer)),
},
}),
);
}
// Upload object information (model matrix + color) to the GPU.
const rotation = zm.rotationY(std.math.tau / 2.0);
// The objects are rotated 180° to face the camera, or else we
// would see the back side of the triangles, which are culled.
core.queue.writeBuffer(app.object_uniform_buffers[0], 0, &[_]ObjectUniformBuffer{.{
.model_matrix = zm.transpose(zm.mul(rotation, zm.translation(-1.0, 0.25, 0.0))),
.color = .{ 1.0, 0.0, 0.0 },
}});
app.object_primitive_indices[0] = 0;
core.queue.writeBuffer(app.object_uniform_buffers[1], 0, &[_]ObjectUniformBuffer{.{
.model_matrix = zm.transpose(zm.mul(rotation, zm.translation(0.0, -0.25, 0.0))),
.color = .{ 0.0, 1.0, 0.0 },
}});
app.object_primitive_indices[1] = 1;
core.queue.writeBuffer(app.object_uniform_buffers[2], 0, &[_]ObjectUniformBuffer{.{
.model_matrix = zm.transpose(zm.mul(rotation, zm.translation(1.0, 0.0, 0.0))),
.color = .{ 0.0, 0.0, 1.0 },
}});
app.object_primitive_indices[2] = 0;
// Set up the primitives we want to render.
// Triangle
app.primitives[0] = createPrimitive(
&.{
.{ .position = .{ 0.0, 0.5, 0.0 } },
.{ .position = .{ 0.5, -0.5, 0.0 } },
.{ .position = .{ -0.5, -0.5, 0.0 } },
},
// Note that the back faces of triangles are "culled", and thus not visible.
// We need to take care to specify the vertices in counter-clock orientation.
&.{
0, 1, 2,
},
);
// Square
app.primitives[1] = createPrimitive(
// 0--2
// | |
// | |
// 1--3
&.{
.{ .position = .{ -0.5, -0.5, 0.0 } },
.{ .position = .{ -0.5, 0.5, 0.0 } },
.{ .position = .{ 0.5, -0.5, 0.0 } },
.{ .position = .{ 0.5, 0.5, 0.0 } },
},
// 0--2 4
// | / /|
// |/ / |
// 1 5--3
&.{
0, 1, 2,
3, 2, 1,
},
);
}
/// Creates a buffer on the GPU with the specified usage
/// flags and immediately fills it with the provided data.
fn createAndWriteBuffer(
comptime T: type,
data: []const T,
usage: gpu.Buffer.UsageFlags,
) *gpu.Buffer {
const buffer = core.device.createBuffer(&.{
.size = data.len * @sizeOf(T),
.usage = usage,
9 months ago
.mapped_at_creation = .false,
});
core.queue.writeBuffer(buffer, 0, data);
return buffer;
}
// Creates a primitive from the provided vertices and indices,
// and uploads the buffers necessary to render it to the GPU.
fn createPrimitive(
vertices: []const VertexData,
indices: []const u32,
) PrimitiveData {
return .{
.vertex_buffer = createAndWriteBuffer(VertexData, vertices, .{ .vertex = true, .copy_dst = true }),
.vertex_count = @intCast(vertices.len),
.index_buffer = createAndWriteBuffer(u32, indices, .{ .index = true, .copy_dst = true }),
.index_count = @intCast(indices.len),
};
9 months ago
}
pub fn deinit(app: *App) void {
9 months ago
// Using `defer` here, so we can specify them
// in the order they were created in `init`.
defer core.deinit();
defer app.pipeline.release();
defer app.scene_uniform_buffer.release();
defer app.scene_bind_group.release();
defer for (app.object_uniform_buffers) |b| b.release();
defer for (app.object_bind_groups) |g| g.release();
defer for (app.primitives) |p| {
p.vertex_buffer.release();
p.index_buffer.release();
};
}
pub fn update(app: *App) !bool {
var iter = core.pollEvents();
while (iter.next()) |event| {
switch (event) {
.close => return true,
else => {},
}
}
// Set up a view matrix from the camera transform.
// This moves everything to be relative to the camera.
// TODO: Actually implement camera transform instead of hardcoding a look-at matrix.
// const view_matrix = zm.inverse(app.camera_transform);
const time = app.app_timer.read();
const x = @cos(time * std.math.tau / 10);
const y = @sin(time * std.math.tau / 10);
const view_matrix = zm.lookAtLh(vec(x, y, -2, 1), vec(0, 0, 0, 1), vec(0, 1, 0, 1));
// Set up a projection matrix using the size of the window.
// The perspective projection will make things further away appear smaller.
const width: f32 = @floatFromInt(core.descriptor.width);
const height: f32 = @floatFromInt(core.descriptor.height);
const field_of_view = std.math.degreesToRadians(f32, 45.0);
const proj_matrix = zm.perspectiveFovLh(field_of_view, width / height, 0.1, 10);
const view_proj_matrix = zm.mul(view_matrix, proj_matrix);
// Get back buffer texture to render to.
const back_buffer_view = core.swap_chain.getCurrentTextureView().?;
defer back_buffer_view.release();
// Once rendering is done (hence `defer`), swap back buffer to the front to display.
defer core.swap_chain.present();
const render_pass_info = gpu.RenderPassDescriptor.init(.{
9 months ago
.color_attachments = &.{.{
.view = back_buffer_view,
.clear_value = std.mem.zeroes(gpu.Color),
.load_op = .clear,
.store_op = .store,
}},
});
// Create a `WGPUCommandEncoder` which provides an interface for recording GPU commands.
const encoder = core.device.createCommandEncoder(null);
defer encoder.release();
// Write to the scene uniform buffer for this set of commands.
encoder.writeBuffer(app.scene_uniform_buffer, 0, &[_]SceneUniformBuffer{.{
// All matrices the GPU has to work with need to be transposed,
// because WebGPU uses column-major matrices while zmath is row-major.
.view_proj_matrix = zm.transpose(view_proj_matrix),
}});
{
const pass = encoder.beginRenderPass(&render_pass_info);
defer pass.release();
defer pass.end();
pass.setPipeline(app.pipeline);
pass.setBindGroup(0, app.scene_bind_group, &.{});
for (app.object_bind_groups, 0..) |object_bind_group, i| {
// Set the vertex and index buffer used to render this object
// to the primitive it wants to use (either triangle or square).
const primitive_index = app.object_primitive_indices[i];
const primitive = app.primitives[primitive_index];
pass.setVertexBuffer(0, primitive.vertex_buffer, 0, primitive.vertex_count * @sizeOf(VertexData));
pass.setIndexBuffer(primitive.index_buffer, .uint32, 0, primitive.index_count * @sizeOf(u32));
// Set the bind group for an object we want to render.
pass.setBindGroup(1, object_bind_group, &.{});
// Draw a number of triangles as specified in the index buffer.
pass.drawIndexed(primitive.index_count, 1, 0, 0, 0);
}
}
// Finish recording commands, creating a `WGPUCommandBuffer`.
var command = encoder.finish(null);
defer command.release();
// Submit the command(s) to the GPU.
core.queue.submit(&.{command});
// Update the window title to show FPS and input frequency.
if (app.title_timer.read() >= 1.0) {
app.title_timer.reset();
try core.printTitle("Triangle [ {d}fps ] [ Input {d}hz ]", .{ core.frameRate(), core.inputRate() });
}
return false;
9 months ago
}