Attempt at making a bloxel game in Zig using Mach and Flecs
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

226 lines
8.0 KiB

9 months ago
const std = @import("std");
const core = @import("mach-core");
const gpu = core.gpu;
9 months ago
const zm = @import("zmath");
const vec = zm.f32x4;
const Mat = zm.Mat;
9 months ago
const VertexData = struct {
position: [3]f32,
};
const SceneUniformBuffer = struct {
view_proj_matrix: zm.Mat,
};
const ModelUniformBuffer = struct {
matrix: zm.Mat,
9 months ago
color: [3]f32,
};
pub const App = @This();
app_timer: core.Timer,
title_timer: core.Timer,
pipeline: *gpu.RenderPipeline,
scene_uniform_buffer: *gpu.Buffer,
scene_bind_group: *gpu.BindGroup,
model_uniform_buffers: [3]*gpu.Buffer,
model_bind_groups: [3]*gpu.BindGroup,
9 months ago
vertex_count: u32,
vertex_buffer: *gpu.Buffer,
pub fn init(app: *App) !void {
try core.init(.{});
9 months ago
app.app_timer = try core.Timer.start();
app.title_timer = try core.Timer.start();
const shader_module = core.device.createShaderModuleWGSL("shader.wgsl", @embedFile("shader.wgsl"));
defer shader_module.release();
9 months ago
// Set up rendering pipeline.
app.pipeline = core.device.createRenderPipeline(&.{
.vertex = gpu.VertexState.init(.{
.module = shader_module,
.entry_point = "vertex_main",
9 months ago
.buffers = &.{
gpu.VertexBufferLayout.init(.{
.array_stride = @sizeOf(VertexData),
.step_mode = .vertex,
.attributes = &.{
.{ .format = .float32x3, .shader_location = 0, .offset = @offsetOf(VertexData, "position") },
},
}),
},
}),
.fragment = &gpu.FragmentState.init(.{
.module = shader_module,
.entry_point = "frag_main",
.targets = &.{.{ .format = core.descriptor.format }},
}),
});
// Set up uniform buffers and bind groups.
// The "scene" uniform contains information for each rendered scene.
app.scene_uniform_buffer = core.device.createBuffer(&.{
.usage = .{ .copy_dst = true, .uniform = true },
.size = @sizeOf(SceneUniformBuffer),
.mapped_at_creation = .false,
});
app.scene_bind_group = core.device.createBindGroup(
&gpu.BindGroup.Descriptor.init(.{
.layout = app.pipeline.getBindGroupLayout(0),
.entries = &.{
gpu.BindGroup.Entry.buffer(0, app.scene_uniform_buffer, 0, @sizeOf(SceneUniformBuffer)),
},
}),
);
9 months ago
// The "model" uniforms contain information about how to render each model.
for (0..3) |i| {
app.model_uniform_buffers[i] = core.device.createBuffer(&.{
.usage = .{ .copy_dst = true, .uniform = true },
.size = @sizeOf(ModelUniformBuffer),
.mapped_at_creation = .false,
});
app.model_bind_groups[i] = core.device.createBindGroup(
&gpu.BindGroup.Descriptor.init(.{
.layout = app.pipeline.getBindGroupLayout(1),
.entries = &.{
gpu.BindGroup.Entry.buffer(0, app.model_uniform_buffers[i], 0, @sizeOf(ModelUniformBuffer)),
},
}),
);
}
// Upload model render information (matrix + color) to the GPU.
core.queue.writeBuffer(app.model_uniform_buffers[0], 0, &[_]ModelUniformBuffer{.{
.matrix = zm.transpose(zm.translation(-1.0, 0.25, 0.0)),
.color = .{ 1.0, 0.0, 0.0 },
}});
core.queue.writeBuffer(app.model_uniform_buffers[1], 0, &[_]ModelUniformBuffer{.{
.matrix = zm.transpose(zm.translation(0.0, -0.25, 0.0)),
.color = .{ 0.0, 1.0, 0.0 },
}});
core.queue.writeBuffer(app.model_uniform_buffers[2], 0, &[_]ModelUniformBuffer{.{
.matrix = zm.transpose(zm.translation(1.0, 0.0, 0.0)),
.color = .{ 0.0, 0.0, 1.0 },
}});
9 months ago
// Set up vertex buffer, containing the vertex data we want to draw.
const vertices = [_]VertexData{
.{ .position = .{ 0.0, 0.5, 0.0 } },
.{ .position = .{ -0.5, -0.5, 0.0 } },
.{ .position = .{ 0.5, -0.5, 0.0 } },
9 months ago
};
app.vertex_count = vertices.len;
app.vertex_buffer = core.device.createBuffer(&.{
.size = app.vertex_count * @sizeOf(VertexData),
.usage = .{ .vertex = true, .copy_dst = true },
.mapped_at_creation = .false,
});
// Upload vertex buffer to the GPU.
core.queue.writeBuffer(app.vertex_buffer, 0, &vertices);
9 months ago
}
pub fn deinit(app: *App) void {
9 months ago
// Using `defer` here, so we can specify them
// in the order they were created in `init`.
defer core.deinit();
defer app.pipeline.release();
defer app.scene_uniform_buffer.release();
defer app.scene_bind_group.release();
defer for (app.model_uniform_buffers) |b| b.release();
defer for (app.model_bind_groups) |g| g.release();
9 months ago
defer app.vertex_buffer.release();
}
pub fn update(app: *App) !bool {
var iter = core.pollEvents();
while (iter.next()) |event| {
switch (event) {
.close => return true,
else => {},
}
}
// Set up a view matrix from the camera transform.
// This moves everything to be relative to the camera.
// TODO: Actually implement camera transform instead of hardcoding a look-at matrix.
// const view_matrix = zm.inverse(app.camera_transform);
const time = app.app_timer.read();
const x = @cos(time * std.math.tau / 10);
const y = @sin(time * std.math.tau / 10);
const view_matrix = zm.lookAtLh(vec(x, y, -2, 1), vec(0, 0, 0, 1), vec(0, 1, 0, 1));
// Set up a projection matrix using the size of the window.
// The perspective projection will make things further away appear smaller.
const width: f32 = @floatFromInt(core.descriptor.width);
const height: f32 = @floatFromInt(core.descriptor.height);
const field_of_view = std.math.degreesToRadians(f32, 45.0);
const proj_matrix = zm.perspectiveFovLh(field_of_view, width / height, 0.1, 10);
const view_proj_matrix = zm.mul(view_matrix, proj_matrix);
// Get back buffer texture to render to.
const back_buffer_view = core.swap_chain.getCurrentTextureView().?;
defer back_buffer_view.release();
// Once rendering is done (hence `defer`), swap back buffer to the front to display.
defer core.swap_chain.present();
const render_pass_info = gpu.RenderPassDescriptor.init(.{
9 months ago
.color_attachments = &.{.{
.view = back_buffer_view,
.clear_value = std.mem.zeroes(gpu.Color),
.load_op = .clear,
.store_op = .store,
}},
});
// Create a `WGPUCommandEncoder` which provides an interface for recording GPU commands.
const encoder = core.device.createCommandEncoder(null);
defer encoder.release();
// Write to the scene uniform buffer for this set of commands.
encoder.writeBuffer(app.scene_uniform_buffer, 0, &[_]SceneUniformBuffer{.{
// All matrices the GPU has to work with need to be transposed,
// because WebGPU uses column-major matrices while zmath is row-major.
.view_proj_matrix = zm.transpose(view_proj_matrix),
}});
{
const pass = encoder.beginRenderPass(&render_pass_info);
defer pass.release();
defer pass.end();
pass.setPipeline(app.pipeline);
pass.setBindGroup(0, app.scene_bind_group, &.{});
9 months ago
pass.setVertexBuffer(0, app.vertex_buffer, 0, app.vertex_count * @sizeOf(VertexData));
for (app.model_bind_groups) |model_bind_group| {
// Set the model bind group for a specific model we want to render.
pass.setBindGroup(1, model_bind_group, &.{});
// Draw the vertices in `vertex_buffer`.
pass.draw(app.vertex_count, 1, 0, 0);
}
}
// Finish recording commands, creating a `WGPUCommandBuffer`.
var command = encoder.finish(null);
defer command.release();
// Submit the command(s) to the GPU.
core.queue.submit(&.{command});
// Update the window title to show FPS and input frequency.
if (app.title_timer.read() >= 1.0) {
app.title_timer.reset();
try core.printTitle("Triangle [ {d}fps ] [ Input {d}hz ]", .{ core.frameRate(), core.inputRate() });
}
return false;
9 months ago
}