You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
323 lines
12 KiB
323 lines
12 KiB
const std = @import("std"); |
|
const core = @import("mach-core"); |
|
const gpu = core.gpu; |
|
|
|
const zm = @import("zmath"); |
|
const vec = zm.f32x4; |
|
const Mat = zm.Mat; |
|
|
|
/// Holds information about how a perticular scene should be rendered. |
|
const SceneUniformBuffer = struct { |
|
view_proj_matrix: zm.Mat, |
|
}; |
|
|
|
/// Holds information about where and how an object should be rendered. |
|
const ObjectUniformBuffer = struct { |
|
model_matrix: zm.Mat, |
|
color: [3]f32, |
|
}; |
|
|
|
/// Describes the layout of each vertex that a primitive is made of. |
|
const VertexData = struct { |
|
position: [3]f32, |
|
}; |
|
|
|
/// Contains the data to render a primitive (3D shape or model). |
|
const PrimitiveData = struct { |
|
/// Vertices describe the "points" that a primitive is made out of. |
|
/// This buffer is of type `[]VertexData`. |
|
vertex_buffer: *gpu.Buffer, |
|
vertex_count: u32, |
|
|
|
/// Indices describe what vertices make up the triangles in a primitive. |
|
/// This buffer is of type `[]u32`. |
|
index_buffer: *gpu.Buffer, |
|
index_count: u32, |
|
|
|
// For example, `vertex_buffer` may have 4 points defining a square, but |
|
// since it needs to be rendered using 2 triangles, `index_buffer` will |
|
// contain 6 entries, `0, 1, 2` and `3, 2, 1` making up one triangle each. |
|
}; |
|
|
|
pub const App = @This(); |
|
|
|
app_timer: core.Timer, |
|
title_timer: core.Timer, |
|
|
|
pipeline: *gpu.RenderPipeline, |
|
|
|
scene_uniform_buffer: *gpu.Buffer, |
|
scene_bind_group: *gpu.BindGroup, |
|
|
|
object_uniform_buffers: [3]*gpu.Buffer, |
|
object_bind_groups: [3]*gpu.BindGroup, |
|
object_primitive_indices: [3]usize, |
|
|
|
primitives: [2]PrimitiveData, |
|
|
|
pub fn init(app: *App) !void { |
|
try core.init(.{}); |
|
|
|
app.app_timer = try core.Timer.start(); |
|
app.title_timer = try core.Timer.start(); |
|
|
|
const shader_module = core.device.createShaderModuleWGSL("shader.wgsl", @embedFile("shader.wgsl")); |
|
defer shader_module.release(); |
|
|
|
// Set up rendering pipeline. |
|
app.pipeline = core.device.createRenderPipeline(&.{ |
|
.vertex = gpu.VertexState.init(.{ |
|
.module = shader_module, |
|
.entry_point = "vertex_main", |
|
.buffers = &.{ |
|
gpu.VertexBufferLayout.init(.{ |
|
.array_stride = @sizeOf(VertexData), |
|
.step_mode = .vertex, |
|
.attributes = &.{ |
|
.{ .format = .float32x3, .shader_location = 0, .offset = @offsetOf(VertexData, "position") }, |
|
}, |
|
}), |
|
}, |
|
}), |
|
.fragment = &gpu.FragmentState.init(.{ |
|
.module = shader_module, |
|
.entry_point = "frag_main", |
|
.targets = &.{.{ .format = core.descriptor.format }}, |
|
}), |
|
.primitive = .{ |
|
.topology = .triangle_list, |
|
.front_face = .ccw, |
|
.cull_mode = .back, |
|
}, |
|
}); |
|
|
|
// Set up uniform buffers and bind groups. |
|
|
|
// The "scene" uniform contains information for each rendered scene. |
|
app.scene_uniform_buffer = core.device.createBuffer(&.{ |
|
.usage = .{ .copy_dst = true, .uniform = true }, |
|
.size = @sizeOf(SceneUniformBuffer), |
|
.mapped_at_creation = .false, |
|
}); |
|
// "Bind groups" are used to associate data from buffers with shader parameters. |
|
// So for example the `scene_bind_group` is accessible via `scene` in our shader. |
|
// Essentially, buffer = data, and bind group = binding parameter to that data. |
|
app.scene_bind_group = core.device.createBindGroup( |
|
&gpu.BindGroup.Descriptor.init(.{ |
|
.layout = app.pipeline.getBindGroupLayout(0), |
|
.entries = &.{ |
|
gpu.BindGroup.Entry.buffer(0, app.scene_uniform_buffer, 0, @sizeOf(SceneUniformBuffer)), |
|
}, |
|
}), |
|
); |
|
|
|
// The "object" uniforms contain information about how to render each object in a scene. |
|
for (0..3) |i| { |
|
app.object_uniform_buffers[i] = core.device.createBuffer(&.{ |
|
.usage = .{ .copy_dst = true, .uniform = true }, |
|
.size = @sizeOf(ObjectUniformBuffer), |
|
.mapped_at_creation = .false, |
|
}); |
|
app.object_bind_groups[i] = core.device.createBindGroup( |
|
&gpu.BindGroup.Descriptor.init(.{ |
|
.layout = app.pipeline.getBindGroupLayout(1), |
|
.entries = &.{ |
|
gpu.BindGroup.Entry.buffer(0, app.object_uniform_buffers[i], 0, @sizeOf(ObjectUniformBuffer)), |
|
}, |
|
}), |
|
); |
|
} |
|
// Upload object information (model matrix + color) to the GPU. |
|
const rotation = zm.rotationY(std.math.tau / 2.0); |
|
// The objects are rotated 180° to face the camera, or else we |
|
// would see the back side of the triangles, which are culled. |
|
core.queue.writeBuffer(app.object_uniform_buffers[0], 0, &[_]ObjectUniformBuffer{.{ |
|
.model_matrix = zm.transpose(zm.mul(rotation, zm.translation(-1.0, 0.25, 0.0))), |
|
.color = .{ 1.0, 0.0, 0.0 }, |
|
}}); |
|
app.object_primitive_indices[0] = 0; |
|
core.queue.writeBuffer(app.object_uniform_buffers[1], 0, &[_]ObjectUniformBuffer{.{ |
|
.model_matrix = zm.transpose(zm.mul(rotation, zm.translation(0.0, -0.25, 0.0))), |
|
.color = .{ 0.0, 1.0, 0.0 }, |
|
}}); |
|
app.object_primitive_indices[1] = 1; |
|
core.queue.writeBuffer(app.object_uniform_buffers[2], 0, &[_]ObjectUniformBuffer{.{ |
|
.model_matrix = zm.transpose(zm.mul(rotation, zm.translation(1.0, 0.0, 0.0))), |
|
.color = .{ 0.0, 0.0, 1.0 }, |
|
}}); |
|
app.object_primitive_indices[2] = 0; |
|
|
|
// Set up the primitives we want to render. |
|
// Triangle |
|
app.primitives[0] = createPrimitive( |
|
&.{ |
|
.{ .position = .{ 0.0, 0.5, 0.0 } }, |
|
.{ .position = .{ 0.5, -0.5, 0.0 } }, |
|
.{ .position = .{ -0.5, -0.5, 0.0 } }, |
|
}, |
|
// Note that the back faces of triangles are "culled", and thus not visible. |
|
// We need to take care to specify the vertices in counter-clock orientation. |
|
&.{ |
|
0, 1, 2, |
|
}, |
|
); |
|
// Square |
|
app.primitives[1] = createPrimitive( |
|
// 0--2 |
|
// | | |
|
// | | |
|
// 1--3 |
|
&.{ |
|
.{ .position = .{ -0.5, -0.5, 0.0 } }, |
|
.{ .position = .{ -0.5, 0.5, 0.0 } }, |
|
.{ .position = .{ 0.5, -0.5, 0.0 } }, |
|
.{ .position = .{ 0.5, 0.5, 0.0 } }, |
|
}, |
|
// 0--2 4 |
|
// | / /| |
|
// |/ / | |
|
// 1 5--3 |
|
&.{ |
|
0, 1, 2, |
|
3, 2, 1, |
|
}, |
|
); |
|
} |
|
|
|
/// Creates a buffer on the GPU with the specified usage |
|
/// flags and immediately fills it with the provided data. |
|
fn createAndWriteBuffer( |
|
comptime T: type, |
|
data: []const T, |
|
usage: gpu.Buffer.UsageFlags, |
|
) *gpu.Buffer { |
|
const buffer = core.device.createBuffer(&.{ |
|
.size = data.len * @sizeOf(T), |
|
.usage = usage, |
|
.mapped_at_creation = .false, |
|
}); |
|
core.queue.writeBuffer(buffer, 0, data); |
|
return buffer; |
|
} |
|
|
|
// Creates a primitive from the provided vertices and indices, |
|
// and uploads the buffers necessary to render it to the GPU. |
|
fn createPrimitive( |
|
vertices: []const VertexData, |
|
indices: []const u32, |
|
) PrimitiveData { |
|
return .{ |
|
.vertex_buffer = createAndWriteBuffer(VertexData, vertices, .{ .vertex = true, .copy_dst = true }), |
|
.vertex_count = @intCast(vertices.len), |
|
.index_buffer = createAndWriteBuffer(u32, indices, .{ .index = true, .copy_dst = true }), |
|
.index_count = @intCast(indices.len), |
|
}; |
|
} |
|
|
|
pub fn deinit(app: *App) void { |
|
// Using `defer` here, so we can specify them |
|
// in the order they were created in `init`. |
|
defer core.deinit(); |
|
defer app.pipeline.release(); |
|
defer app.scene_uniform_buffer.release(); |
|
defer app.scene_bind_group.release(); |
|
defer for (app.object_uniform_buffers) |b| b.release(); |
|
defer for (app.object_bind_groups) |g| g.release(); |
|
defer for (app.primitives) |p| { |
|
p.vertex_buffer.release(); |
|
p.index_buffer.release(); |
|
}; |
|
} |
|
|
|
pub fn update(app: *App) !bool { |
|
var iter = core.pollEvents(); |
|
while (iter.next()) |event| { |
|
switch (event) { |
|
.close => return true, |
|
else => {}, |
|
} |
|
} |
|
|
|
// Set up a view matrix from the camera transform. |
|
// This moves everything to be relative to the camera. |
|
// TODO: Actually implement camera transform instead of hardcoding a look-at matrix. |
|
// const view_matrix = zm.inverse(app.camera_transform); |
|
const time = app.app_timer.read(); |
|
const x = @cos(time * std.math.tau / 10); |
|
const y = @sin(time * std.math.tau / 10); |
|
const view_matrix = zm.lookAtLh(vec(x, y, -2, 1), vec(0, 0, 0, 1), vec(0, 1, 0, 1)); |
|
|
|
// Set up a projection matrix using the size of the window. |
|
// The perspective projection will make things further away appear smaller. |
|
const width: f32 = @floatFromInt(core.descriptor.width); |
|
const height: f32 = @floatFromInt(core.descriptor.height); |
|
const field_of_view = std.math.degreesToRadians(f32, 45.0); |
|
const proj_matrix = zm.perspectiveFovLh(field_of_view, width / height, 0.1, 10); |
|
|
|
const view_proj_matrix = zm.mul(view_matrix, proj_matrix); |
|
|
|
// Get back buffer texture to render to. |
|
const back_buffer_view = core.swap_chain.getCurrentTextureView().?; |
|
defer back_buffer_view.release(); |
|
// Once rendering is done (hence `defer`), swap back buffer to the front to display. |
|
defer core.swap_chain.present(); |
|
|
|
const render_pass_info = gpu.RenderPassDescriptor.init(.{ |
|
.color_attachments = &.{.{ |
|
.view = back_buffer_view, |
|
.clear_value = std.mem.zeroes(gpu.Color), |
|
.load_op = .clear, |
|
.store_op = .store, |
|
}}, |
|
}); |
|
|
|
// Create a `WGPUCommandEncoder` which provides an interface for recording GPU commands. |
|
const encoder = core.device.createCommandEncoder(null); |
|
defer encoder.release(); |
|
|
|
// Write to the scene uniform buffer for this set of commands. |
|
encoder.writeBuffer(app.scene_uniform_buffer, 0, &[_]SceneUniformBuffer{.{ |
|
// All matrices the GPU has to work with need to be transposed, |
|
// because WebGPU uses column-major matrices while zmath is row-major. |
|
.view_proj_matrix = zm.transpose(view_proj_matrix), |
|
}}); |
|
|
|
{ |
|
const pass = encoder.beginRenderPass(&render_pass_info); |
|
defer pass.release(); |
|
defer pass.end(); |
|
|
|
pass.setPipeline(app.pipeline); |
|
pass.setBindGroup(0, app.scene_bind_group, &.{}); |
|
|
|
for (app.object_bind_groups, 0..) |object_bind_group, i| { |
|
// Set the vertex and index buffer used to render this object |
|
// to the primitive it wants to use (either triangle or square). |
|
const primitive_index = app.object_primitive_indices[i]; |
|
const primitive = app.primitives[primitive_index]; |
|
pass.setVertexBuffer(0, primitive.vertex_buffer, 0, primitive.vertex_count * @sizeOf(VertexData)); |
|
pass.setIndexBuffer(primitive.index_buffer, .uint32, 0, primitive.index_count * @sizeOf(u32)); |
|
|
|
// Set the bind group for an object we want to render. |
|
pass.setBindGroup(1, object_bind_group, &.{}); |
|
|
|
// Draw a number of triangles as specified in the index buffer. |
|
pass.drawIndexed(primitive.index_count, 1, 0, 0, 0); |
|
} |
|
} |
|
|
|
// Finish recording commands, creating a `WGPUCommandBuffer`. |
|
var command = encoder.finish(null); |
|
defer command.release(); |
|
|
|
// Submit the command(s) to the GPU. |
|
core.queue.submit(&.{command}); |
|
|
|
// Update the window title to show FPS and input frequency. |
|
if (app.title_timer.read() >= 1.0) { |
|
app.title_timer.reset(); |
|
try core.printTitle("Triangle [ {d}fps ] [ Input {d}hz ]", .{ core.frameRate(), core.inputRate() }); |
|
} |
|
|
|
return false; |
|
}
|
|
|