Compare commits

..

3 Commits

  1. 170
      src/main.zig

@ -1,4 +1,6 @@
const std = @import("std"); const std = @import("std");
const GeneralPurposeAllocator = std.heap.GeneralPurposeAllocator(.{});
const core = @import("mach-core"); const core = @import("mach-core");
const gpu = core.gpu; const gpu = core.gpu;
@ -51,21 +53,52 @@ const PrimitiveData = struct {
pub const App = @This(); pub const App = @This();
gpa: GeneralPurposeAllocator,
allocator: std.mem.Allocator,
random: std.rand.Random,
app_timer: core.Timer, app_timer: core.Timer,
title_timer: core.Timer, title_timer: core.Timer,
depth_texture: *gpu.Texture,
depth_texture_view: *gpu.TextureView,
pipeline: *gpu.RenderPipeline, pipeline: *gpu.RenderPipeline,
scene_uniform_buffer: *gpu.Buffer, scene_uniform_buffer: *gpu.Buffer,
scene_uniform_bind_group: *gpu.BindGroup, scene_uniform_bind_group: *gpu.BindGroup,
object_data: [3]ObjectData, primitives: []PrimitiveData,
primitives: [2]PrimitiveData, object_data: []ObjectData,
pub fn init(app: *App) !void { pub fn init(app: *App) !void {
try core.init(.{}); try core.init(.{});
// Set up a "general purpose allocator" that will handle allocations for
// the lifetime of the application, for which a more specific allocation
// strategy is not necessary.
//
// Here, `gpa` is an instance of this allocator, which handles the
// allocation logic, while `allocator` is the interface through which
// functions such as `alloc` and `free` are called.
app.gpa = GeneralPurposeAllocator{};
app.allocator = app.gpa.allocator();
// Create a pseudo-random number generator, but initialize it with
// a constant seed so we always get the same result when launching.
var prng = std.rand.DefaultPrng.init(0);
app.random = prng.random();
app.app_timer = try core.Timer.start(); app.app_timer = try core.Timer.start();
app.title_timer = try core.Timer.start(); app.title_timer = try core.Timer.start();
// Create a depth texture. This is used to ensure that when things are
// rendered, an object behind another won't draw over one in front, simply
// because it was rendered at a later point in time.
app.depth_texture = core.device.createTexture(&.{
.usage = .{ .render_attachment = true },
.size = .{ .width = core.descriptor.width, .height = core.descriptor.height },
.format = .depth24_plus,
});
app.depth_texture_view = app.depth_texture.createView(null);
const shader_module = core.device.createShaderModuleWGSL("shader.wgsl", @embedFile("shader.wgsl")); const shader_module = core.device.createShaderModuleWGSL("shader.wgsl", @embedFile("shader.wgsl"));
defer shader_module.release(); defer shader_module.release();
@ -84,16 +117,21 @@ pub fn init(app: *App) !void {
}), }),
}, },
}), }),
.fragment = &gpu.FragmentState.init(.{
.module = shader_module,
.entry_point = "frag_main",
.targets = &.{.{ .format = core.descriptor.format }},
}),
.primitive = .{ .primitive = .{
.topology = .triangle_list, .topology = .triangle_list,
.front_face = .ccw, .front_face = .ccw,
.cull_mode = .back, .cull_mode = .back,
}, },
.depth_stencil = &.{
.format = .depth24_plus,
.depth_write_enabled = .true,
.depth_compare = .less,
},
.fragment = &gpu.FragmentState.init(.{
.module = shader_module,
.entry_point = "frag_main",
.targets = &.{.{ .format = core.descriptor.format }},
}),
}); });
// Set up scene related uniform buffers and bind groups. // Set up scene related uniform buffers and bind groups.
@ -107,44 +145,8 @@ pub fn init(app: *App) !void {
app.scene_uniform_bind_group = result.bind_group; app.scene_uniform_bind_group = result.bind_group;
} }
// Set up object related uniform buffers and bind groups.
// This uploads data to the GPU about all the object we
// want to render, such as their location and color.
{
const ObjectDescription = struct { pos: [3]f32, color: [3]f32, prim: usize };
const object_desc = [_]ObjectDescription{
// zig fmt: off
.{ .pos = .{ -1.25, 0.25, 0.0 }, .color = .{ 1.0, 0.0, 0.0 }, .prim = 0 },
.{ .pos = .{ 0.0 , -0.25, 0.0 }, .color = .{ 0.0, 1.0, 0.0 }, .prim = 1 },
.{ .pos = .{ 1.25, 0.0 , 0.0 }, .color = .{ 0.0, 0.0, 1.0 }, .prim = 0 },
// zig fmt: on
};
// The objects are rotated 180° to face the camera, or else we
// would see the back side of the triangles, which are culled.
const rotation = zm.rotationY(std.math.tau / 2.0);
for (object_desc, &app.object_data) |desc, *object| {
const translation = zm.translation(desc.pos[0], desc.pos[1], desc.pos[2]);
const model_matrix = zm.mul(rotation, translation);
const result = createAndWriteUniformBuffer(
app.pipeline.getBindGroupLayout(1),
ObjectUniformBuffer{
.model_matrix = zm.transpose(model_matrix),
.color = desc.color,
},
);
object.* = .{
.uniform_buffer = result.buffer,
.uniform_bind_group = result.bind_group,
.primitive_index = desc.prim,
};
}
}
// Set up the primitives we want to render. // Set up the primitives we want to render.
app.primitives = try app.allocator.alloc(PrimitiveData, 2);
// Triangle // Triangle
app.primitives[0] = createPrimitive( app.primitives[0] = createPrimitive(
&.{ &.{
@ -186,6 +188,57 @@ pub fn init(app: *App) !void {
3, 2, 1, 3, 2, 1,
}, },
); );
// Set up object related uniform buffers and bind groups.
// This uploads data to the GPU about all the object we
// want to render, such as their location and color.
{
const grid_size = 8;
// Allocate a slice to store as many ObjectData as we want to create.
//
// Using a slice instead of an array means that we could change how
// many object we want to render at compile time, however it requires
// allocating, and later freeing, memory to store the slice.
app.object_data = try app.allocator.alloc(ObjectData, grid_size * grid_size);
// Note that for loops in Zig are a little different than you might
// know from other languages. They only look over arrays, slices,
// tuples and ranges, potentially multiple at once.
for (app.object_data, 0..) |*object, i| {
const grid_max: f32 = @floatFromInt(grid_size - 1);
const x = @as(f32, @floatFromInt(i % grid_size)) / grid_max;
const z = @as(f32, @floatFromInt(i / grid_size)) / grid_max;
const rotation = zm.rotationY(std.math.tau * (x + z) / 2.0);
const translation = zm.translation((x - 0.5) * grid_size, 0, (z - 0.5) * grid_size);
const model_matrix = zm.mul(rotation, translation);
// Make the object have a color depending on its location in the grid.
// These values are layed out so each corner is red, green, blue and black.
const color = .{
std.math.clamp(1.0 - x - z, 0.0, 1.0),
std.math.clamp(x - z, 0.0, 1.0),
std.math.clamp(z - x, 0.0, 1.0),
};
const result = createAndWriteUniformBuffer(
app.pipeline.getBindGroupLayout(1),
ObjectUniformBuffer{
.model_matrix = zm.transpose(model_matrix),
.color = color,
},
);
// The `*object` syntax gets us a pointer to each element in the
// `object_data` slice, allowing us to override it within the loop.
object.* = .{
.uniform_buffer = result.buffer,
.uniform_bind_group = result.bind_group,
.primitive_index = app.random.int(usize) % app.primitives.len,
};
}
}
} }
/// Creates a buffer on the GPU to store uniform parameter information as /// Creates a buffer on the GPU to store uniform parameter information as
@ -246,17 +299,22 @@ pub fn deinit(app: *App) void {
// Using `defer` here, so we can specify them // Using `defer` here, so we can specify them
// in the order they were created in `init`. // in the order they were created in `init`.
defer core.deinit(); defer core.deinit();
defer _ = app.gpa.deinit(); // TODO: Check for memory leaks?
defer app.depth_texture.release();
defer app.depth_texture_view.release();
defer app.pipeline.release(); defer app.pipeline.release();
defer app.scene_uniform_buffer.release(); defer app.scene_uniform_buffer.release();
defer app.scene_uniform_bind_group.release(); defer app.scene_uniform_bind_group.release();
defer for (app.object_data) |o| { defer app.allocator.free(app.primitives);
o.uniform_buffer.release();
o.uniform_bind_group.release();
};
defer for (app.primitives) |p| { defer for (app.primitives) |p| {
p.vertex_buffer.release(); p.vertex_buffer.release();
p.index_buffer.release(); p.index_buffer.release();
}; };
defer app.allocator.free(app.object_data);
defer for (app.object_data) |o| {
o.uniform_buffer.release();
o.uniform_bind_group.release();
};
} }
pub fn update(app: *App) !bool { pub fn update(app: *App) !bool {
@ -273,16 +331,18 @@ pub fn update(app: *App) !bool {
// TODO: Actually implement camera transform instead of hardcoding a look-at matrix. // TODO: Actually implement camera transform instead of hardcoding a look-at matrix.
// const view_matrix = zm.inverse(app.camera_transform); // const view_matrix = zm.inverse(app.camera_transform);
const time = app.app_timer.read(); const time = app.app_timer.read();
const x = @cos(time * std.math.tau / 10); const camera_distance = 8.0;
const y = @sin(time * std.math.tau / 10); const x = @cos(time * std.math.tau / 20) * camera_distance;
const view_matrix = zm.lookAtLh(vec(x, y, -2, 1), vec(0, 0, 0, 1), vec(0, 1, 0, 1)); const z = @sin(time * std.math.tau / 20) * camera_distance;
const camera_pos = vec(x, 2.0, z, 1.0);
const view_matrix = zm.lookAtLh(camera_pos, vec(0, 0, 0, 1), vec(0, 1, 0, 1));
// Set up a projection matrix using the size of the window. // Set up a projection matrix using the size of the window.
// The perspective projection will make things further away appear smaller. // The perspective projection will make things further away appear smaller.
const width: f32 = @floatFromInt(core.descriptor.width); const width: f32 = @floatFromInt(core.descriptor.width);
const height: f32 = @floatFromInt(core.descriptor.height); const height: f32 = @floatFromInt(core.descriptor.height);
const field_of_view = std.math.degreesToRadians(f32, 45.0); const field_of_view = std.math.degreesToRadians(f32, 45.0);
const proj_matrix = zm.perspectiveFovLh(field_of_view, width / height, 0.1, 10); const proj_matrix = zm.perspectiveFovLh(field_of_view, width / height, 0.05, 80.0);
const view_proj_matrix = zm.mul(view_matrix, proj_matrix); const view_proj_matrix = zm.mul(view_matrix, proj_matrix);
@ -299,6 +359,12 @@ pub fn update(app: *App) !bool {
.load_op = .clear, .load_op = .clear,
.store_op = .store, .store_op = .store,
}}, }},
.depth_stencil_attachment = &.{
.view = app.depth_texture_view,
.depth_load_op = .clear,
.depth_store_op = .store,
.depth_clear_value = 1.0,
},
}); });
// Create a `WGPUCommandEncoder` which provides an interface for recording GPU commands. // Create a `WGPUCommandEncoder` which provides an interface for recording GPU commands.

Loading…
Cancel
Save