|
|
|
@ -55,6 +55,7 @@ pub const App = @This(); |
|
|
|
|
|
|
|
|
|
gpa: GeneralPurposeAllocator, |
|
|
|
|
allocator: std.mem.Allocator, |
|
|
|
|
random: std.rand.Random, |
|
|
|
|
|
|
|
|
|
app_timer: core.Timer, |
|
|
|
|
title_timer: core.Timer, |
|
|
|
@ -62,8 +63,8 @@ title_timer: core.Timer, |
|
|
|
|
pipeline: *gpu.RenderPipeline, |
|
|
|
|
scene_uniform_buffer: *gpu.Buffer, |
|
|
|
|
scene_uniform_bind_group: *gpu.BindGroup, |
|
|
|
|
object_data: []ObjectData, |
|
|
|
|
primitives: []PrimitiveData, |
|
|
|
|
object_data: []ObjectData, |
|
|
|
|
|
|
|
|
|
pub fn init(app: *App) !void { |
|
|
|
|
try core.init(.{}); |
|
|
|
@ -78,6 +79,11 @@ pub fn init(app: *App) !void { |
|
|
|
|
app.gpa = GeneralPurposeAllocator{}; |
|
|
|
|
app.allocator = app.gpa.allocator(); |
|
|
|
|
|
|
|
|
|
// Create a pseudo-random number generator, but initialize it with |
|
|
|
|
// a constant seed so we always get the same result when launching. |
|
|
|
|
var prng = std.rand.DefaultPrng.init(0); |
|
|
|
|
app.random = prng.random(); |
|
|
|
|
|
|
|
|
|
app.app_timer = try core.Timer.start(); |
|
|
|
|
app.title_timer = try core.Timer.start(); |
|
|
|
|
|
|
|
|
@ -122,55 +128,6 @@ pub fn init(app: *App) !void { |
|
|
|
|
app.scene_uniform_bind_group = result.bind_group; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Set up object related uniform buffers and bind groups. |
|
|
|
|
// This uploads data to the GPU about all the object we |
|
|
|
|
// want to render, such as their location and color. |
|
|
|
|
{ |
|
|
|
|
const ObjectDescription = struct { pos: [3]f32, color: [3]f32, prim: usize }; |
|
|
|
|
const object_desc = [_]ObjectDescription{ |
|
|
|
|
// zig fmt: off |
|
|
|
|
.{ .pos = .{ -1.25, 0.25, 0.0 }, .color = .{ 1.0, 0.0, 0.0 }, .prim = 0 }, |
|
|
|
|
.{ .pos = .{ 0.0 , -0.25, 0.0 }, .color = .{ 0.0, 1.0, 0.0 }, .prim = 1 }, |
|
|
|
|
.{ .pos = .{ 1.25, 0.0 , 0.0 }, .color = .{ 0.0, 0.0, 1.0 }, .prim = 0 }, |
|
|
|
|
// zig fmt: on |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
// The objects are rotated 180° to face the camera, or else we |
|
|
|
|
// would see the back side of the triangles, which are culled. |
|
|
|
|
const rotation = zm.rotationY(std.math.tau / 2.0); |
|
|
|
|
|
|
|
|
|
// Allocate a slice to store as many ObjectData as we want to create. |
|
|
|
|
// |
|
|
|
|
// Using a slice instead of an array means that we could change how |
|
|
|
|
// many object we want to render at compile time, however it requires |
|
|
|
|
// allocating, and later freeing, memory to store the slice. |
|
|
|
|
app.object_data = try app.allocator.alloc(ObjectData, object_desc.len); |
|
|
|
|
|
|
|
|
|
// Note that for loops in Zig are a little different than you might |
|
|
|
|
// know from other languages. They only look over arrays, slices, |
|
|
|
|
// tuples and ranges, potentially multiple at once. |
|
|
|
|
for (object_desc, app.object_data) |desc, *object| { |
|
|
|
|
const translation = zm.translation(desc.pos[0], desc.pos[1], desc.pos[2]); |
|
|
|
|
const model_matrix = zm.mul(rotation, translation); |
|
|
|
|
|
|
|
|
|
const result = createAndWriteUniformBuffer( |
|
|
|
|
app.pipeline.getBindGroupLayout(1), |
|
|
|
|
ObjectUniformBuffer{ |
|
|
|
|
.model_matrix = zm.transpose(model_matrix), |
|
|
|
|
.color = desc.color, |
|
|
|
|
}, |
|
|
|
|
); |
|
|
|
|
|
|
|
|
|
// The `*object` syntax gets us a pointer to each element in the |
|
|
|
|
// `object_data` slice, allowing us to override it within the loop. |
|
|
|
|
object.* = .{ |
|
|
|
|
.uniform_buffer = result.buffer, |
|
|
|
|
.uniform_bind_group = result.bind_group, |
|
|
|
|
.primitive_index = desc.prim, |
|
|
|
|
}; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Set up the primitives we want to render. |
|
|
|
|
app.primitives = try app.allocator.alloc(PrimitiveData, 2); |
|
|
|
|
// Triangle |
|
|
|
@ -214,6 +171,57 @@ pub fn init(app: *App) !void { |
|
|
|
|
3, 2, 1, |
|
|
|
|
}, |
|
|
|
|
); |
|
|
|
|
|
|
|
|
|
// Set up object related uniform buffers and bind groups. |
|
|
|
|
// This uploads data to the GPU about all the object we |
|
|
|
|
// want to render, such as their location and color. |
|
|
|
|
{ |
|
|
|
|
const grid_size = 8; |
|
|
|
|
|
|
|
|
|
// Allocate a slice to store as many ObjectData as we want to create. |
|
|
|
|
// |
|
|
|
|
// Using a slice instead of an array means that we could change how |
|
|
|
|
// many object we want to render at compile time, however it requires |
|
|
|
|
// allocating, and later freeing, memory to store the slice. |
|
|
|
|
app.object_data = try app.allocator.alloc(ObjectData, grid_size * grid_size); |
|
|
|
|
|
|
|
|
|
// Note that for loops in Zig are a little different than you might |
|
|
|
|
// know from other languages. They only look over arrays, slices, |
|
|
|
|
// tuples and ranges, potentially multiple at once. |
|
|
|
|
for (app.object_data, 0..) |*object, i| { |
|
|
|
|
const grid_max: f32 = @floatFromInt(grid_size - 1); |
|
|
|
|
const x = @as(f32, @floatFromInt(i % grid_size)) / grid_max; |
|
|
|
|
const z = @as(f32, @floatFromInt(i / grid_size)) / grid_max; |
|
|
|
|
|
|
|
|
|
const rotation = zm.rotationY(std.math.tau * (x + z) / 2.0); |
|
|
|
|
const translation = zm.translation((x - 0.5) * grid_size, 0, (z - 0.5) * grid_size); |
|
|
|
|
const model_matrix = zm.mul(rotation, translation); |
|
|
|
|
|
|
|
|
|
// Make the object have a color depending on its location in the grid. |
|
|
|
|
// These values are layed out so each corner is red, green, blue and black. |
|
|
|
|
const color = .{ |
|
|
|
|
std.math.clamp(1.0 - x - z, 0.0, 1.0), |
|
|
|
|
std.math.clamp(x - z, 0.0, 1.0), |
|
|
|
|
std.math.clamp(z - x, 0.0, 1.0), |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
const result = createAndWriteUniformBuffer( |
|
|
|
|
app.pipeline.getBindGroupLayout(1), |
|
|
|
|
ObjectUniformBuffer{ |
|
|
|
|
.model_matrix = zm.transpose(model_matrix), |
|
|
|
|
.color = color, |
|
|
|
|
}, |
|
|
|
|
); |
|
|
|
|
|
|
|
|
|
// The `*object` syntax gets us a pointer to each element in the |
|
|
|
|
// `object_data` slice, allowing us to override it within the loop. |
|
|
|
|
object.* = .{ |
|
|
|
|
.uniform_buffer = result.buffer, |
|
|
|
|
.uniform_bind_group = result.bind_group, |
|
|
|
|
.primitive_index = app.random.int(usize) % app.primitives.len, |
|
|
|
|
}; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/// Creates a buffer on the GPU to store uniform parameter information as |
|
|
|
@ -278,16 +286,16 @@ pub fn deinit(app: *App) void { |
|
|
|
|
defer app.pipeline.release(); |
|
|
|
|
defer app.scene_uniform_buffer.release(); |
|
|
|
|
defer app.scene_uniform_bind_group.release(); |
|
|
|
|
defer app.allocator.free(app.object_data); |
|
|
|
|
defer for (app.object_data) |o| { |
|
|
|
|
o.uniform_buffer.release(); |
|
|
|
|
o.uniform_bind_group.release(); |
|
|
|
|
}; |
|
|
|
|
defer app.allocator.free(app.primitives); |
|
|
|
|
defer for (app.primitives) |p| { |
|
|
|
|
p.vertex_buffer.release(); |
|
|
|
|
p.index_buffer.release(); |
|
|
|
|
}; |
|
|
|
|
defer app.allocator.free(app.object_data); |
|
|
|
|
defer for (app.object_data) |o| { |
|
|
|
|
o.uniform_buffer.release(); |
|
|
|
|
o.uniform_bind_group.release(); |
|
|
|
|
}; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
pub fn update(app: *App) !bool { |
|
|
|
@ -304,16 +312,18 @@ pub fn update(app: *App) !bool { |
|
|
|
|
// TODO: Actually implement camera transform instead of hardcoding a look-at matrix. |
|
|
|
|
// const view_matrix = zm.inverse(app.camera_transform); |
|
|
|
|
const time = app.app_timer.read(); |
|
|
|
|
const x = @cos(time * std.math.tau / 10); |
|
|
|
|
const y = @sin(time * std.math.tau / 10); |
|
|
|
|
const view_matrix = zm.lookAtLh(vec(x, y, -2, 1), vec(0, 0, 0, 1), vec(0, 1, 0, 1)); |
|
|
|
|
const camera_distance = 8.0; |
|
|
|
|
const x = @cos(time * std.math.tau / 20) * camera_distance; |
|
|
|
|
const z = @sin(time * std.math.tau / 20) * camera_distance; |
|
|
|
|
const camera_pos = vec(x, 2.0, z, 1.0); |
|
|
|
|
const view_matrix = zm.lookAtLh(camera_pos, vec(0, 0, 0, 1), vec(0, 1, 0, 1)); |
|
|
|
|
|
|
|
|
|
// Set up a projection matrix using the size of the window. |
|
|
|
|
// The perspective projection will make things further away appear smaller. |
|
|
|
|
const width: f32 = @floatFromInt(core.descriptor.width); |
|
|
|
|
const height: f32 = @floatFromInt(core.descriptor.height); |
|
|
|
|
const field_of_view = std.math.degreesToRadians(f32, 45.0); |
|
|
|
|
const proj_matrix = zm.perspectiveFovLh(field_of_view, width / height, 0.1, 10); |
|
|
|
|
const proj_matrix = zm.perspectiveFovLh(field_of_view, width / height, 0.05, 80.0); |
|
|
|
|
|
|
|
|
|
const view_proj_matrix = zm.mul(view_matrix, proj_matrix); |
|
|
|
|
|
|
|
|
|