parent
e978a98265
commit
9109bd7328
3 changed files with 342 additions and 301 deletions
@ -0,0 +1,326 @@ |
||||
const std = @import("std"); |
||||
|
||||
const core = @import("mach-core"); |
||||
const gpu = core.gpu; |
||||
|
||||
const zm = @import("zmath"); |
||||
const vec = zm.f32x4; |
||||
const Mat = zm.Mat; |
||||
|
||||
const App = @import("./main.zig"); |
||||
|
||||
const primitives = @import("./primitives.zig"); |
||||
const VertexData = primitives.VertexData; |
||||
const PrimitiveData = primitives.PrimitiveData; |
||||
|
||||
/// Holds information about how a perticular scene should be rendered. |
||||
const SceneUniformBuffer = struct { |
||||
view_proj_matrix: Mat, |
||||
}; |
||||
|
||||
/// Holds information about where and how an object should be rendered. |
||||
const ObjectUniformBuffer = struct { |
||||
model_matrix: Mat, |
||||
color: [3]f32, |
||||
}; |
||||
|
||||
/// Holds data needed to render an object in a rendering pass. |
||||
const ObjectData = struct { |
||||
/// Reference to data stored on the GPU of type `ObjectUniformBuffer`. |
||||
uniform_buffer: *gpu.Buffer, |
||||
/// Bind group used to associate the buffer to the `object` shader parameter. |
||||
uniform_bind_group: *gpu.BindGroup, |
||||
/// Reference to the primitive (shape or model) to render for this object. |
||||
primitive: *PrimitiveData, |
||||
}; |
||||
|
||||
const Renderer = @This(); |
||||
|
||||
app: *App, |
||||
|
||||
depth_texture: *gpu.Texture, |
||||
depth_texture_view: *gpu.TextureView, |
||||
pipeline: *gpu.RenderPipeline, |
||||
scene_uniform_buffer: *gpu.Buffer, |
||||
scene_uniform_bind_group: *gpu.BindGroup, |
||||
|
||||
primitive_data: []PrimitiveData, |
||||
object_data: []ObjectData, |
||||
|
||||
pub fn init(app: *App) !*Renderer { |
||||
// Create a depth texture. This is used to ensure that when things are |
||||
// rendered, an object behind another won't draw over one in front, simply |
||||
// because it was rendered at a later point in time. |
||||
const depth_texture = core.device.createTexture(&.{ |
||||
.usage = .{ .render_attachment = true }, |
||||
.size = .{ .width = core.descriptor.width, .height = core.descriptor.height }, |
||||
.format = .depth24_plus, |
||||
}); |
||||
const depth_texture_view = depth_texture.createView(null); |
||||
|
||||
const shader_module = core.device.createShaderModuleWGSL("shader.wgsl", @embedFile("shader.wgsl")); |
||||
defer shader_module.release(); |
||||
|
||||
// Set up rendering pipeline. |
||||
const pipeline = core.device.createRenderPipeline(&.{ |
||||
.vertex = gpu.VertexState.init(.{ |
||||
.module = shader_module, |
||||
.entry_point = "vertex_main", |
||||
.buffers = &.{ |
||||
gpu.VertexBufferLayout.init(.{ |
||||
.array_stride = @sizeOf(VertexData), |
||||
.step_mode = .vertex, |
||||
.attributes = &.{ |
||||
.{ .format = .float32x3, .shader_location = 0, .offset = @offsetOf(VertexData, "position") }, |
||||
}, |
||||
}), |
||||
}, |
||||
}), |
||||
.primitive = .{ |
||||
.topology = .triangle_list, |
||||
.front_face = .ccw, |
||||
.cull_mode = .back, |
||||
}, |
||||
.depth_stencil = &.{ |
||||
.format = .depth24_plus, |
||||
.depth_write_enabled = .true, |
||||
.depth_compare = .less, |
||||
}, |
||||
.fragment = &gpu.FragmentState.init(.{ |
||||
.module = shader_module, |
||||
.entry_point = "frag_main", |
||||
.targets = &.{.{ .format = core.descriptor.format }}, |
||||
}), |
||||
}); |
||||
|
||||
// Set up scene related uniform buffers and bind groups. |
||||
const scene_uniform = createAndWriteUniformBuffer( |
||||
pipeline.getBindGroupLayout(0), |
||||
SceneUniformBuffer{ .view_proj_matrix = zm.identity() }, |
||||
); |
||||
|
||||
// Set up the primitives we want to render. |
||||
// |
||||
// Using `dupe` to allocate a slice here allows easily adjusting the |
||||
// primitives to use, without changing the type of `primitive_data`. |
||||
const primitive_data = try app.allocator.dupe(PrimitiveData, &.{ |
||||
// primitives.createTrianglePrimitive(1.0), |
||||
// primitives.createSquarePrimitive(0.8), |
||||
// primitives.createCirclePrimitive(0.5, 24), |
||||
primitives.createCubePrimitive(0.65), |
||||
primitives.createPyramidPrimitive(0.75), |
||||
}); |
||||
|
||||
// Set up object related uniform buffers and bind groups. |
||||
// This uploads data to the GPU about all the object we |
||||
// want to render, such as their location and color. |
||||
const grid_size = 8; |
||||
|
||||
// Allocate a slice to store as many ObjectData as we want to create. |
||||
// |
||||
// Using a slice instead of an array means that we could change how |
||||
// many object we want to render at compile time, however it requires |
||||
// allocating, and later freeing, memory to store the slice. |
||||
const object_data = try app.allocator.alloc(ObjectData, grid_size * grid_size); |
||||
|
||||
// Note that for loops in Zig are a little different than you might |
||||
// know from other languages. They only look over arrays, slices, |
||||
// tuples and ranges, potentially multiple at once. |
||||
for (object_data, 0..) |*object, i| { |
||||
const grid_max: f32 = @floatFromInt(grid_size - 1); |
||||
const x = @as(f32, @floatFromInt(i % grid_size)) / grid_max; |
||||
const z = @as(f32, @floatFromInt(i / grid_size)) / grid_max; |
||||
|
||||
const rotation = zm.rotationY(std.math.tau * (x + z) / 2.0); |
||||
const translation = zm.translation((x - 0.5) * grid_size, 0, (z - 0.5) * grid_size); |
||||
const model_matrix = zm.mul(rotation, translation); |
||||
|
||||
// Make the object have a color depending on its location in the grid. |
||||
// These values are layed out so each corner is red, green, blue and black. |
||||
const color = .{ |
||||
std.math.clamp(1.0 - x - z, 0.0, 1.0), |
||||
std.math.clamp(x - z, 0.0, 1.0), |
||||
std.math.clamp(z - x, 0.0, 1.0), |
||||
}; |
||||
|
||||
const object_uniform = createAndWriteUniformBuffer( |
||||
pipeline.getBindGroupLayout(1), |
||||
ObjectUniformBuffer{ |
||||
.model_matrix = zm.transpose(model_matrix), |
||||
.color = color, |
||||
}, |
||||
); |
||||
|
||||
// Pick a "random" primitive to use for this object. |
||||
const primitive_index = app.random.int(usize) % primitive_data.len; |
||||
const primitive = &primitive_data[primitive_index]; |
||||
|
||||
// The `*object` syntax gets us a pointer to each element in the |
||||
// `object_data` slice, allowing us to override it within the loop. |
||||
object.* = .{ |
||||
.uniform_buffer = object_uniform.buffer, |
||||
.uniform_bind_group = object_uniform.bind_group, |
||||
.primitive = primitive, |
||||
}; |
||||
} |
||||
|
||||
const result = try app.allocator.create(Renderer); |
||||
result.* = .{ |
||||
.app = app, |
||||
.depth_texture = depth_texture, |
||||
.depth_texture_view = depth_texture_view, |
||||
.pipeline = pipeline, |
||||
.scene_uniform_buffer = scene_uniform.buffer, |
||||
.scene_uniform_bind_group = scene_uniform.bind_group, |
||||
.primitive_data = primitive_data, |
||||
.object_data = object_data, |
||||
}; |
||||
return result; |
||||
} |
||||
|
||||
pub fn deinit(self: *Renderer) void { |
||||
// Using `defer` here, so we can specify them |
||||
// in the order they were created in `init`. |
||||
defer self.app.allocator.destroy(self); |
||||
|
||||
defer self.depth_texture.release(); |
||||
defer self.depth_texture_view.release(); |
||||
defer self.pipeline.release(); |
||||
defer self.scene_uniform_buffer.release(); |
||||
defer self.scene_uniform_bind_group.release(); |
||||
|
||||
defer self.app.allocator.free(self.primitive_data); |
||||
defer for (self.primitive_data) |p| { |
||||
p.vertex_buffer.release(); |
||||
p.index_buffer.release(); |
||||
}; |
||||
defer self.app.allocator.free(self.object_data); |
||||
defer for (self.object_data) |o| { |
||||
o.uniform_buffer.release(); |
||||
o.uniform_bind_group.release(); |
||||
}; |
||||
} |
||||
|
||||
pub fn update(self: *Renderer) void { |
||||
// Set up a view matrix from the camera transform. |
||||
// This moves everything to be relative to the camera. |
||||
// TODO: Actually implement camera transform instead of hardcoding a look-at matrix. |
||||
// const view_matrix = zm.inverse(app.camera_transform); |
||||
const time = self.app.app_timer.read(); |
||||
const camera_distance = 8.0; |
||||
const x = @cos(time * std.math.tau / 20) * camera_distance; |
||||
const z = @sin(time * std.math.tau / 20) * camera_distance; |
||||
const camera_pos = vec(x, 2.0, z, 1.0); |
||||
const view_matrix = zm.lookAtLh(camera_pos, vec(0, 0, 0, 1), vec(0, 1, 0, 1)); |
||||
|
||||
// Set up a projection matrix using the size of the window. |
||||
// The perspective projection will make things further away appear smaller. |
||||
const width: f32 = @floatFromInt(core.descriptor.width); |
||||
const height: f32 = @floatFromInt(core.descriptor.height); |
||||
const field_of_view = std.math.degreesToRadians(f32, 45.0); |
||||
const proj_matrix = zm.perspectiveFovLh(field_of_view, width / height, 0.05, 80.0); |
||||
|
||||
const view_proj_matrix = zm.mul(view_matrix, proj_matrix); |
||||
|
||||
// Get back buffer texture to render to. |
||||
const back_buffer_view = core.swap_chain.getCurrentTextureView().?; |
||||
defer back_buffer_view.release(); |
||||
// Once rendering is done (hence `defer`), swap back buffer to the front to display. |
||||
defer core.swap_chain.present(); |
||||
|
||||
const render_pass_info = gpu.RenderPassDescriptor.init(.{ |
||||
.color_attachments = &.{.{ |
||||
.view = back_buffer_view, |
||||
.clear_value = std.mem.zeroes(gpu.Color), |
||||
.load_op = .clear, |
||||
.store_op = .store, |
||||
}}, |
||||
.depth_stencil_attachment = &.{ |
||||
.view = self.depth_texture_view, |
||||
.depth_load_op = .clear, |
||||
.depth_store_op = .store, |
||||
.depth_clear_value = 1.0, |
||||
}, |
||||
}); |
||||
|
||||
// Create a `WGPUCommandEncoder` which provides an interface for recording GPU commands. |
||||
const encoder = core.device.createCommandEncoder(null); |
||||
defer encoder.release(); |
||||
|
||||
// Write to the scene uniform buffer for this set of commands. |
||||
encoder.writeBuffer(self.scene_uniform_buffer, 0, &[_]SceneUniformBuffer{.{ |
||||
// All matrices the GPU has to work with need to be transposed, |
||||
// because WebGPU uses column-major matrices while zmath is row-major. |
||||
.view_proj_matrix = zm.transpose(view_proj_matrix), |
||||
}}); |
||||
|
||||
{ |
||||
const pass = encoder.beginRenderPass(&render_pass_info); |
||||
defer pass.release(); |
||||
defer pass.end(); |
||||
|
||||
pass.setPipeline(self.pipeline); |
||||
pass.setBindGroup(0, self.scene_uniform_bind_group, &.{}); |
||||
|
||||
for (self.object_data) |object| { |
||||
// Set the vertex and index buffer used to render this object |
||||
// to the primitive it wants to use (either triangle or square). |
||||
const prim = object.primitive; |
||||
pass.setVertexBuffer(0, prim.vertex_buffer, 0, prim.vertex_count * @sizeOf(VertexData)); |
||||
pass.setIndexBuffer(prim.index_buffer, .uint32, 0, prim.index_count * @sizeOf(u32)); |
||||
|
||||
// Set the bind group for an object we want to render. |
||||
pass.setBindGroup(1, object.uniform_bind_group, &.{}); |
||||
|
||||
// Draw a number of triangles as specified in the index buffer. |
||||
pass.drawIndexed(prim.index_count, 1, 0, 0, 0); |
||||
} |
||||
} |
||||
|
||||
// Finish recording commands, creating a `WGPUCommandBuffer`. |
||||
var command = encoder.finish(null); |
||||
defer command.release(); |
||||
|
||||
// Submit the command(s) to the GPU. |
||||
core.queue.submit(&.{command}); |
||||
} |
||||
|
||||
/// Creates a buffer on the GPU to store uniform parameter information as |
||||
/// well as a bind group with the specified layout pointing to that buffer. |
||||
/// Additionally, immediately fills the buffer with the provided data. |
||||
pub fn createAndWriteUniformBuffer( |
||||
layout: *gpu.BindGroupLayout, |
||||
data: anytype, |
||||
) struct { |
||||
buffer: *gpu.Buffer, |
||||
bind_group: *gpu.BindGroup, |
||||
} { |
||||
const T = @TypeOf(data); |
||||
const usage = gpu.Buffer.UsageFlags{ .copy_dst = true, .uniform = true }; |
||||
const buffer = createAndWriteBuffer(T, &.{data}, usage); |
||||
|
||||
// "Bind groups" are used to associate data from buffers with shader parameters. |
||||
// So for example the `scene_uniform_bind_group` is accessible via `scene` in our shader. |
||||
// Essentially, buffer = data, and bind group = binding parameter to that data. |
||||
const bind_group_entry = gpu.BindGroup.Entry.buffer(0, buffer, 0, @sizeOf(T)); |
||||
const bind_group_desc = gpu.BindGroup.Descriptor.init(.{ .layout = layout, .entries = &.{bind_group_entry} }); |
||||
const bind_group = core.device.createBindGroup(&bind_group_desc); |
||||
|
||||
return .{ .buffer = buffer, .bind_group = bind_group }; |
||||
} |
||||
|
||||
/// Creates a buffer on the GPU with the specified usage |
||||
/// flags and immediately fills it with the provided data. |
||||
pub fn createAndWriteBuffer( |
||||
comptime T: type, |
||||
data: []const T, |
||||
usage: gpu.Buffer.UsageFlags, |
||||
) *gpu.Buffer { |
||||
const buffer = core.device.createBuffer(&.{ |
||||
.size = data.len * @sizeOf(T), |
||||
.usage = usage, |
||||
.mapped_at_creation = .false, |
||||
}); |
||||
core.queue.writeBuffer(buffer, 0, data); |
||||
return buffer; |
||||
} |
Loading…
Reference in new issue