Attempt at making a bloxel game in Zig using Mach and Flecs
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

146 lines
4.7 KiB

const std = @import("std");
const core = @import("mach-core");
const gpu = core.gpu;
const zm = @import("zmath");
const vec = zm.f32x4;
const Mat = zm.Mat;
pub const App = @This();
app_timer: core.Timer,
title_timer: core.Timer,
pipeline: *gpu.RenderPipeline,
mvp_uniform_buffer: *gpu.Buffer,
mvp_bind_group: *gpu.BindGroup,
pub fn init(app: *App) !void {
try core.init(.{});
const shader_module = core.device.createShaderModuleWGSL("shader.wgsl", @embedFile("shader.wgsl"));
defer shader_module.release();
const blend = gpu.BlendState{};
const color_target = gpu.ColorTargetState{
.format = core.descriptor.format,
.blend = &blend,
.write_mask = gpu.ColorWriteMaskFlags.all,
};
const fragment = gpu.FragmentState.init(.{
.module = shader_module,
.entry_point = "frag_main",
.targets = &.{color_target},
});
const pipeline_descriptor = gpu.RenderPipeline.Descriptor{
.vertex = gpu.VertexState{
.module = shader_module,
.entry_point = "vertex_main",
},
.fragment = &fragment,
};
app.app_timer = try core.Timer.start();
app.title_timer = try core.Timer.start();
app.pipeline = core.device.createRenderPipeline(&pipeline_descriptor);
app.mvp_uniform_buffer = core.device.createBuffer(&.{
.usage = .{ .copy_dst = true, .uniform = true },
.size = @sizeOf(zm.Mat),
.mapped_at_creation = .false,
});
app.mvp_bind_group = core.device.createBindGroup(
&gpu.BindGroup.Descriptor.init(.{
.layout = app.pipeline.getBindGroupLayout(0),
.entries = &.{
gpu.BindGroup.Entry.buffer(0, app.mvp_uniform_buffer, 0, @sizeOf(zm.Mat)),
},
}),
);
}
pub fn deinit(app: *App) void {
defer core.deinit();
defer app.pipeline.release();
defer app.mvp_uniform_buffer.release();
defer app.mvp_bind_group.release();
}
pub fn update(app: *App) !bool {
var iter = core.pollEvents();
while (iter.next()) |event| {
switch (event) {
.close => return true,
else => {},
}
}
// Set up a view matrix from the camera transform.
// This moves everything to be relative to the camera.
// TODO: Actually implement camera transform instead of hardcoding a look-at matrix.
// const view_matrix = zm.inverse(app.camera_transform);
const time = app.app_timer.read();
const x = @cos(time * std.math.tau / 10);
const y = @sin(time * std.math.tau / 10);
const view_matrix = zm.lookAtLh(vec(x, y, -2, 1), vec(0, 0, 0, 1), vec(0, 1, 0, 1));
// Set up a projection matrix using the size of the window.
// The perspective projection will make things further away appear smaller.
const width: f32 = @floatFromInt(core.descriptor.width);
const height: f32 = @floatFromInt(core.descriptor.height);
const field_of_view = std.math.degreesToRadians(f32, 45.0);
const proj_matrix = zm.perspectiveFovLh(field_of_view, width / height, 0.1, 10);
const view_proj_matrix = zm.mul(view_matrix, proj_matrix);
// Get back buffer texture to render to.
const back_buffer_view = core.swap_chain.getCurrentTextureView().?;
defer back_buffer_view.release();
// Once rendering is done (hence `defer`), swap back buffer to the front to display.
defer core.swap_chain.present();
const color_attachment = gpu.RenderPassColorAttachment{
.view = back_buffer_view,
.clear_value = std.mem.zeroes(gpu.Color),
.load_op = .clear,
.store_op = .store,
};
const render_pass_info = gpu.RenderPassDescriptor.init(.{
.color_attachments = &.{color_attachment},
});
// Create a `WGPUCommandEncoder` which provides an interface for recording GPU commands.
const encoder = core.device.createCommandEncoder(null);
defer encoder.release();
encoder.writeBuffer(app.mvp_uniform_buffer, 0, &[_]zm.Mat{zm.transpose(view_proj_matrix)});
{
const pass = encoder.beginRenderPass(&render_pass_info);
defer pass.release();
defer pass.end();
pass.setPipeline(app.pipeline);
pass.setBindGroup(0, app.mvp_bind_group, &.{});
// Draw three triangles with the help of a specialized shader.
pass.draw(9, 1, 0, 0);
}
// Finish recording commands, creating a `WGPUCommandBuffer`.
var command = encoder.finish(null);
defer command.release();
// Submit the command(s) to the GPU.
core.queue.submit(&.{command});
// Update the window title to show FPS and input frequency.
if (app.title_timer.read() >= 1.0) {
app.title_timer.reset();
try core.printTitle("Triangle [ {d}fps ] [ Input {d}hz ]", .{ core.frameRate(), core.inputRate() });
}
return false;
}