const std = @import("std"); const core = @import("mach-core"); const gpu = core.gpu; const zm = @import("zmath"); const vec = zm.f32x4; const Mat = zm.Mat; pub const App = @This(); app_timer: core.Timer, title_timer: core.Timer, pipeline: *gpu.RenderPipeline, mvp_uniform_buffer: *gpu.Buffer, mvp_bind_group: *gpu.BindGroup, pub fn init(app: *App) !void { try core.init(.{}); const shader_module = core.device.createShaderModuleWGSL("shader.wgsl", @embedFile("shader.wgsl")); defer shader_module.release(); const blend = gpu.BlendState{}; const color_target = gpu.ColorTargetState{ .format = core.descriptor.format, .blend = &blend, .write_mask = gpu.ColorWriteMaskFlags.all, }; const fragment = gpu.FragmentState.init(.{ .module = shader_module, .entry_point = "frag_main", .targets = &.{color_target}, }); const pipeline_descriptor = gpu.RenderPipeline.Descriptor{ .vertex = gpu.VertexState{ .module = shader_module, .entry_point = "vertex_main", }, .fragment = &fragment, }; app.app_timer = try core.Timer.start(); app.title_timer = try core.Timer.start(); app.pipeline = core.device.createRenderPipeline(&pipeline_descriptor); app.mvp_uniform_buffer = core.device.createBuffer(&.{ .usage = .{ .copy_dst = true, .uniform = true }, .size = @sizeOf(zm.Mat), .mapped_at_creation = .false, }); app.mvp_bind_group = core.device.createBindGroup( &gpu.BindGroup.Descriptor.init(.{ .layout = app.pipeline.getBindGroupLayout(0), .entries = &.{ gpu.BindGroup.Entry.buffer(0, app.mvp_uniform_buffer, 0, @sizeOf(zm.Mat)), }, }), ); } pub fn deinit(app: *App) void { defer core.deinit(); defer app.pipeline.release(); defer app.mvp_uniform_buffer.release(); defer app.mvp_bind_group.release(); } pub fn update(app: *App) !bool { var iter = core.pollEvents(); while (iter.next()) |event| { switch (event) { .close => return true, else => {}, } } // Set up a view matrix from the camera transform. // This moves everything to be relative to the camera. // TODO: Actually implement camera transform instead of hardcoding a look-at matrix. // const view_matrix = zm.inverse(app.camera_transform); const time = app.app_timer.read(); const x = @cos(time * std.math.tau / 10); const y = @sin(time * std.math.tau / 10); const view_matrix = zm.lookAtLh(vec(x, y, -2, 1), vec(0, 0, 0, 1), vec(0, 1, 0, 1)); // Set up a projection matrix using the size of the window. // The perspective projection will make things further away appear smaller. const width: f32 = @floatFromInt(core.descriptor.width); const height: f32 = @floatFromInt(core.descriptor.height); const field_of_view = std.math.degreesToRadians(f32, 45.0); const proj_matrix = zm.perspectiveFovLh(field_of_view, width / height, 0.1, 10); const view_proj_matrix = zm.mul(view_matrix, proj_matrix); // Get back buffer texture to render to. const back_buffer_view = core.swap_chain.getCurrentTextureView().?; defer back_buffer_view.release(); // Once rendering is done (hence `defer`), swap back buffer to the front to display. defer core.swap_chain.present(); const color_attachment = gpu.RenderPassColorAttachment{ .view = back_buffer_view, .clear_value = std.mem.zeroes(gpu.Color), .load_op = .clear, .store_op = .store, }; const render_pass_info = gpu.RenderPassDescriptor.init(.{ .color_attachments = &.{color_attachment}, }); // Create a `WGPUCommandEncoder` which provides an interface for recording GPU commands. const encoder = core.device.createCommandEncoder(null); defer encoder.release(); encoder.writeBuffer(app.mvp_uniform_buffer, 0, &[_]zm.Mat{zm.transpose(view_proj_matrix)}); { const pass = encoder.beginRenderPass(&render_pass_info); defer pass.release(); defer pass.end(); pass.setPipeline(app.pipeline); pass.setBindGroup(0, app.mvp_bind_group, &.{}); // Draw three triangles with the help of a specialized shader. pass.draw(9, 1, 0, 0); } // Finish recording commands, creating a `WGPUCommandBuffer`. var command = encoder.finish(null); defer command.release(); // Submit the command(s) to the GPU. core.queue.submit(&.{command}); // Update the window title to show FPS and input frequency. if (app.title_timer.read() >= 1.0) { app.title_timer.reset(); try core.printTitle("Triangle [ {d}fps ] [ Input {d}hz ]", .{ core.frameRate(), core.inputRate() }); } return false; }