Attempt at making a bloxel game in Zig using Mach and Flecs
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

344 lines
13 KiB

const std = @import("std");
const core = @import("mach-core");
const gpu = core.gpu;
const zm = @import("zmath");
const vec = zm.f32x4;
const Mat = zm.Mat;
const App = @import("./main.zig");
const primitives = @import("./primitives.zig");
const VertexData = primitives.VertexData;
const PrimitiveData = primitives.PrimitiveData;
/// Holds information about how a perticular scene should be rendered.
const SceneUniformBuffer = struct {
view_proj_matrix: Mat,
};
/// Holds information about where and how an object should be rendered.
const ObjectUniformBuffer = struct {
model_matrix: Mat,
color: [3]f32,
};
/// Holds data needed to render an object in a rendering pass.
const ObjectData = struct {
/// Reference to data stored on the GPU of type `ObjectUniformBuffer`.
uniform_buffer: *gpu.Buffer,
/// Bind group used to associate the buffer to the `object` shader parameter.
uniform_bind_group: *gpu.BindGroup,
/// Reference to the primitive (shape or model) to render for this object.
primitive: *PrimitiveData,
};
const Renderer = @This();
app: *App,
pipeline: *gpu.RenderPipeline,
scene_uniform_buffer: *gpu.Buffer,
scene_uniform_bind_group: *gpu.BindGroup,
depth_texture: ?*gpu.Texture = null,
depth_texture_view: ?*gpu.TextureView = null,
primitive_data: []PrimitiveData,
object_data: []ObjectData,
pub fn init(app: *App) !*Renderer {
const shader_module = core.device.createShaderModuleWGSL("shader.wgsl", @embedFile("shader.wgsl"));
defer shader_module.release();
// Set up rendering pipeline.
const pipeline = core.device.createRenderPipeline(&.{
.vertex = gpu.VertexState.init(.{
.module = shader_module,
.entry_point = "vertex_main",
.buffers = &.{
gpu.VertexBufferLayout.init(.{
.array_stride = @sizeOf(VertexData),
.step_mode = .vertex,
.attributes = &.{
.{ .format = .float32x3, .shader_location = 0, .offset = @offsetOf(VertexData, "position") },
},
}),
},
}),
.primitive = .{
.topology = .triangle_list,
.front_face = .ccw,
.cull_mode = .back,
},
.depth_stencil = &.{
.format = .depth24_plus,
.depth_write_enabled = .true,
.depth_compare = .less,
},
.fragment = &gpu.FragmentState.init(.{
.module = shader_module,
.entry_point = "frag_main",
.targets = &.{.{ .format = core.descriptor.format }},
}),
});
// Set up scene related uniform buffers and bind groups.
const scene_uniform = createAndWriteUniformBuffer(
pipeline.getBindGroupLayout(0),
SceneUniformBuffer{ .view_proj_matrix = zm.identity() },
);
// Set up the primitives we want to render.
//
// Using `dupe` to allocate a slice here allows easily adjusting the
// primitives to use, without changing the type of `primitive_data`.
const primitive_data = try app.allocator.dupe(PrimitiveData, &.{
// primitives.createTrianglePrimitive(1.0),
// primitives.createSquarePrimitive(0.8),
// primitives.createCirclePrimitive(0.5, 24),
primitives.createCubePrimitive(0.65),
primitives.createPyramidPrimitive(0.75),
});
// Set up object related uniform buffers and bind groups.
// This uploads data to the GPU about all the object we
// want to render, such as their location and color.
const grid_size = 8;
// Allocate a slice to store as many ObjectData as we want to create.
//
// Using a slice instead of an array means that we could change how
// many object we want to render at compile time, however it requires
// allocating, and later freeing, memory to store the slice.
const object_data = try app.allocator.alloc(ObjectData, grid_size * grid_size);
// Note that for loops in Zig are a little different than you might
// know from other languages. They only look over arrays, slices,
// tuples and ranges, potentially multiple at once.
for (object_data, 0..) |*object, i| {
const grid_max: f32 = @floatFromInt(grid_size - 1);
const x = @as(f32, @floatFromInt(i % grid_size)) / grid_max;
const z = @as(f32, @floatFromInt(i / grid_size)) / grid_max;
const rotation = zm.rotationY(std.math.tau * (x + z) / 2.0);
const translation = zm.translation((x - 0.5) * grid_size, 0, (z - 0.5) * grid_size);
const model_matrix = zm.mul(rotation, translation);
// Make the object have a color depending on its location in the grid.
// These values are layed out so each corner is red, green, blue and black.
const color = .{
std.math.clamp(1.0 - x - z, 0.0, 1.0),
std.math.clamp(x - z, 0.0, 1.0),
std.math.clamp(z - x, 0.0, 1.0),
};
const object_uniform = createAndWriteUniformBuffer(
pipeline.getBindGroupLayout(1),
ObjectUniformBuffer{
.model_matrix = zm.transpose(model_matrix),
.color = color,
},
);
// Pick a "random" primitive to use for this object.
const primitive_index = app.random.int(usize) % primitive_data.len;
const primitive = &primitive_data[primitive_index];
// The `*object` syntax gets us a pointer to each element in the
// `object_data` slice, allowing us to override it within the loop.
object.* = .{
.uniform_buffer = object_uniform.buffer,
.uniform_bind_group = object_uniform.bind_group,
.primitive = primitive,
};
}
const result = try app.allocator.create(Renderer);
result.* = .{
.app = app,
.pipeline = pipeline,
.scene_uniform_buffer = scene_uniform.buffer,
.scene_uniform_bind_group = scene_uniform.bind_group,
.primitive_data = primitive_data,
.object_data = object_data,
};
// Initialize the depth texture.
// This is called also whenever the window is resized.
result.recreateDepthTexture();
return result;
}
pub fn deinit(self: *Renderer) void {
// Using `defer` here, so we can specify them
// in the order they were created in `init`.
defer self.app.allocator.destroy(self);
defer self.pipeline.release();
defer self.scene_uniform_buffer.release();
defer self.scene_uniform_bind_group.release();
defer self.app.allocator.free(self.primitive_data);
defer for (self.primitive_data) |p| {
p.vertex_buffer.release();
p.index_buffer.release();
};
defer self.app.allocator.free(self.object_data);
defer for (self.object_data) |o| {
o.uniform_buffer.release();
o.uniform_bind_group.release();
};
defer if (self.depth_texture) |t| t.release();
defer if (self.depth_texture_view) |v| v.release();
}
pub fn resize(self: *Renderer) void {
// Recreate depth texture with the proper size, otherwise
// the application may crash when the window is resized.
self.recreateDepthTexture();
}
pub fn update(self: *Renderer) void {
// Set up a view matrix from the camera transform.
// This moves everything to be relative to the camera.
// TODO: Actually implement camera transform instead of hardcoding a look-at matrix.
// const view_matrix = zm.inverse(app.camera_transform);
const time = self.app.app_timer.read();
const camera_distance = 8.0;
const x = @cos(time * std.math.tau / 20) * camera_distance;
const z = @sin(time * std.math.tau / 20) * camera_distance;
const camera_pos = vec(x, 2.0, z, 1.0);
const view_matrix = zm.lookAtLh(camera_pos, vec(0, 0, 0, 1), vec(0, 1, 0, 1));
// Set up a projection matrix using the size of the window.
// The perspective projection will make things further away appear smaller.
const width: f32 = @floatFromInt(core.descriptor.width);
const height: f32 = @floatFromInt(core.descriptor.height);
const field_of_view = std.math.degreesToRadians(f32, 45.0);
const proj_matrix = zm.perspectiveFovLh(field_of_view, width / height, 0.05, 80.0);
const view_proj_matrix = zm.mul(view_matrix, proj_matrix);
// Get back buffer texture to render to.
const back_buffer_view = core.swap_chain.getCurrentTextureView().?;
defer back_buffer_view.release();
// Once rendering is done (hence `defer`), swap back buffer to the front to display.
defer core.swap_chain.present();
const render_pass_info = gpu.RenderPassDescriptor.init(.{
.color_attachments = &.{.{
.view = back_buffer_view,
.clear_value = std.mem.zeroes(gpu.Color),
.load_op = .clear,
.store_op = .store,
}},
.depth_stencil_attachment = &.{
.view = self.depth_texture_view.?,
.depth_load_op = .clear,
.depth_store_op = .store,
.depth_clear_value = 1.0,
},
});
// Create a `WGPUCommandEncoder` which provides an interface for recording GPU commands.
const encoder = core.device.createCommandEncoder(null);
defer encoder.release();
// Write to the scene uniform buffer for this set of commands.
encoder.writeBuffer(self.scene_uniform_buffer, 0, &[_]SceneUniformBuffer{.{
// All matrices the GPU has to work with need to be transposed,
// because WebGPU uses column-major matrices while zmath is row-major.
.view_proj_matrix = zm.transpose(view_proj_matrix),
}});
{
const pass = encoder.beginRenderPass(&render_pass_info);
defer pass.release();
defer pass.end();
pass.setPipeline(self.pipeline);
pass.setBindGroup(0, self.scene_uniform_bind_group, &.{});
for (self.object_data) |object| {
// Set the vertex and index buffer used to render this object
// to the primitive it wants to use (either triangle or square).
const prim = object.primitive;
pass.setVertexBuffer(0, prim.vertex_buffer, 0, prim.vertex_count * @sizeOf(VertexData));
pass.setIndexBuffer(prim.index_buffer, .uint32, 0, prim.index_count * @sizeOf(u32));
// Set the bind group for an object we want to render.
pass.setBindGroup(1, object.uniform_bind_group, &.{});
// Draw a number of triangles as specified in the index buffer.
pass.drawIndexed(prim.index_count, 1, 0, 0, 0);
}
}
// Finish recording commands, creating a `WGPUCommandBuffer`.
var command = encoder.finish(null);
defer command.release();
// Submit the command(s) to the GPU.
core.queue.submit(&.{command});
}
/// Creates a depth texture. This is used to ensure that when things are
/// rendered, an object behind another won't draw over one in front, simply
/// because it was rendered at a later point in time.
pub fn recreateDepthTexture(self: *Renderer) void {
// Release previous depth butter and view, if any.
if (self.depth_texture) |t| t.release();
if (self.depth_texture_view) |v| v.release();
self.depth_texture = core.device.createTexture(&.{
.usage = .{ .render_attachment = true },
.size = .{ .width = core.descriptor.width, .height = core.descriptor.height },
.format = .depth24_plus,
});
self.depth_texture_view = self.depth_texture.?.createView(null);
}
/// Creates a buffer on the GPU to store uniform parameter information as
/// well as a bind group with the specified layout pointing to that buffer.
/// Additionally, immediately fills the buffer with the provided data.
pub fn createAndWriteUniformBuffer(
layout: *gpu.BindGroupLayout,
data: anytype,
) struct {
buffer: *gpu.Buffer,
bind_group: *gpu.BindGroup,
} {
const T = @TypeOf(data);
const usage = gpu.Buffer.UsageFlags{ .copy_dst = true, .uniform = true };
const buffer = createAndWriteBuffer(T, &.{data}, usage);
// "Bind groups" are used to associate data from buffers with shader parameters.
// So for example the `scene_uniform_bind_group` is accessible via `scene` in our shader.
// Essentially, buffer = data, and bind group = binding parameter to that data.
const bind_group_entry = gpu.BindGroup.Entry.buffer(0, buffer, 0, @sizeOf(T));
const bind_group_desc = gpu.BindGroup.Descriptor.init(.{ .layout = layout, .entries = &.{bind_group_entry} });
const bind_group = core.device.createBindGroup(&bind_group_desc);
return .{ .buffer = buffer, .bind_group = bind_group };
}
/// Creates a buffer on the GPU with the specified usage
/// flags and immediately fills it with the provided data.
pub fn createAndWriteBuffer(
comptime T: type,
data: []const T,
usage: gpu.Buffer.UsageFlags,
) *gpu.Buffer {
const buffer = core.device.createBuffer(&.{
.size = data.len * @sizeOf(T),
.usage = usage,
.mapped_at_creation = .false,
});
core.queue.writeBuffer(buffer, 0, data);
return buffer;
}