Attempt at making a bloxel game in Zig using Mach and Flecs
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

474 lines
18 KiB

const std = @import("std");
const zigimg = @import("zigimg");
const Rgb24 = zigimg.color.Rgb24;
const Rgba32 = zigimg.color.Rgba32;
const core = @import("mach").core;
const gpu = core.gpu;
const zm = @import("zmath");
const vec = zm.f32x4;
const Mat = zm.Mat;
const App = @import("./main.zig");
const primitives = @import("./primitives.zig");
const VertexData = primitives.VertexData;
const PrimitiveData = primitives.PrimitiveData;
const flecszigble = @import("flecs-zig-ble");
const Context = flecszigble.Context(void);
const Entity = Context.Entity;
const Iter = Context.Iter;
const flecs = flecszigble.flecs;
const OnStore = flecs.pipeline.OnStore;
const Transform = struct { value: Mat };
const CameraPerspective = struct {
/// Vertical field of view (in degrees).
field_of_view: f32,
/// The near clip plane distance. Objects closer than this value are
/// "cut off". Should be set to a positive value close to zero, depending
/// on how close rendered objects typically get to the camera.
near_plane: f32,
/// The far clip place distance. Objects further than this value are
/// "cut off" and therefore won't be visible. Should be set to a larger
/// positive value, depending on how far objects can get from the camera.
far_plane: f32,
};
/// Holds data needed to render an object in a rendering pass.
const ObjectData = struct {
/// Bind group which associates model-related buffers with parameters
/// in our shader. This one is accessible via `@group(1)` in our shader.
model_bind_group: *gpu.BindGroup,
/// Reference to the primitive (shape or model) to render for this object.
primitive: *PrimitiveData,
};
const Renderer = @This();
app: *App,
time: f32 = 0.0,
pipeline: *gpu.RenderPipeline,
view_proj_buffer: *gpu.Buffer,
camera_bind_group: *gpu.BindGroup,
depth_texture: ?*gpu.Texture = null,
depth_texture_view: ?*gpu.TextureView = null,
primitive_data: []PrimitiveData,
object_data: []ObjectData,
pub fn init(app: *App) !*Renderer {
// A string buffer used to format objects' labels.
var label_buffer: [256]u8 = undefined;
// Embed `default.png` texture in the executable and upload it to the GPU.
const texture_bytes = @embedFile("./gfx/default.png");
const texture_view = try loadTexture(app.allocator, texture_bytes);
defer texture_view.release();
const shader_module = core.device.createShaderModuleWGSL("shader.wgsl", @embedFile("shader.wgsl"));
defer shader_module.release();
// Define layouts for our bind groups and pipeline.
// This helps find errors with missing or mismatching shader properties.
var camera_bind_group_layout = core.device.createBindGroupLayout(&gpu.BindGroupLayout.Descriptor.init(.{
.label = "Camera Bind Group Layout",
.entries = &.{
gpu.BindGroupLayout.Entry.buffer(0, .{ .vertex = true }, .uniform, false, 0),
},
}));
defer camera_bind_group_layout.release();
var model_bind_group_layout = core.device.createBindGroupLayout(&gpu.BindGroupLayout.Descriptor.init(.{
.label = "Model Bind Group Layout",
.entries = &.{
gpu.BindGroupLayout.Entry.sampler(0, .{ .fragment = true }, .filtering),
gpu.BindGroupLayout.Entry.texture(1, .{ .fragment = true }, .float, .dimension_2d, false),
gpu.BindGroupLayout.Entry.buffer(2, .{ .vertex = true }, .uniform, false, 0),
gpu.BindGroupLayout.Entry.buffer(3, .{ .vertex = true }, .uniform, false, 0),
},
}));
defer model_bind_group_layout.release();
const pipeline_layout = core.device.createPipelineLayout(&gpu.PipelineLayout.Descriptor.init(.{
.bind_group_layouts = &.{
camera_bind_group_layout,
model_bind_group_layout,
},
}));
defer pipeline_layout.release();
// Set up rendering pipeline.
const pipeline = core.device.createRenderPipeline(&.{
.layout = pipeline_layout,
.vertex = gpu.VertexState.init(.{
.module = shader_module,
.entry_point = "vertex_main",
.buffers = &.{
gpu.VertexBufferLayout.init(.{
.array_stride = @sizeOf(VertexData),
.step_mode = .vertex,
.attributes = &.{
.{ .format = .float32x3, .shader_location = 0, .offset = @offsetOf(VertexData, "position") },
.{ .format = .float32x2, .shader_location = 1, .offset = @offsetOf(VertexData, "uv") },
},
}),
},
}),
.primitive = .{
.topology = .triangle_list,
.front_face = .ccw,
.cull_mode = .back,
},
.depth_stencil = &.{
.format = .depth24_plus,
.depth_write_enabled = .true,
.depth_compare = .less,
},
.fragment = &gpu.FragmentState.init(.{
.module = shader_module,
.entry_point = "frag_main",
.targets = &.{.{ .format = core.descriptor.format }},
}),
});
// Set up scene related uniform buffers and bind groups.
const view_proj_buffer = createAndWriteBuffer(zm.Mat, &.{zm.identity()}, .{ .copy_dst = true, .uniform = true });
// "Bind groups" are used to associate data from buffers with shader parameters.
// So for example the `camera_bind_group` is accessible via `@group(0)` in our shader.
const camera_bind_group = core.device.createBindGroup(&gpu.BindGroup.Descriptor.init(.{
.label = "Camera Bind Group",
.layout = camera_bind_group_layout,
.entries = &.{
gpu.BindGroup.Entry.buffer(0, view_proj_buffer, 0, @sizeOf(zm.Mat)),
},
}));
// Create a sampler that tells the GPU how to sample pixels from a texture.
// Includes filtering (nearest-neighbor, linear, ..) and wrapping behavior.
const texture_sampler = core.device.createSampler(&.{});
defer texture_sampler.release();
// Set up the primitives we want to render.
//
// Using `dupe` to allocate a slice here allows easily adjusting the
// primitives to use, without changing the type of `primitive_data`.
const primitive_data = try app.allocator.dupe(PrimitiveData, &.{
// primitives.createTrianglePrimitive(1.0),
// primitives.createSquarePrimitive(0.8),
// primitives.createCirclePrimitive(0.5, 24),
primitives.createCubePrimitive(0.65),
primitives.createPyramidPrimitive(0.75),
});
// Set up object related uniform buffers and bind groups.
// This uploads data to the GPU about all the object we
// want to render, such as their location and color.
const grid_size = 8;
// Allocate a slice to store as many ObjectData as we want to create.
//
// Using a slice instead of an array means that we could change how
// many object we want to render at compile time, however it requires
// allocating, and later freeing, memory to store the slice.
const object_data = try app.allocator.alloc(ObjectData, grid_size * grid_size);
// Note that for loops in Zig are a little different than you might
// know from other languages. They only look over arrays, slices,
// tuples and ranges, potentially multiple at once.
for (object_data, 0..) |*object, i| {
const grid_max: f32 = @floatFromInt(grid_size - 1);
const x = @as(f32, @floatFromInt(i % grid_size)) / grid_max;
const z = @as(f32, @floatFromInt(i / grid_size)) / grid_max;
const rotation = zm.rotationY(std.math.tau * (x + z) / 2.0);
const translation = zm.translation((x - 0.5) * grid_size, 0, (z - 0.5) * grid_size);
const model_matrix = zm.mul(rotation, translation);
// Make the object have a color depending on its location in the grid.
// These values are layed out so each corner is red, green, blue and black.
const model_color = .{
std.math.clamp(1.0 - x - z, 0.0, 1.0),
std.math.clamp(x - z, 0.0, 1.0),
std.math.clamp(z - x, 0.0, 1.0),
};
const model_matrix_buffer = createAndWriteBuffer(zm.Mat, &.{zm.transpose(model_matrix)}, .{ .copy_dst = true, .uniform = true });
defer model_matrix_buffer.release();
const model_color_buffer = createAndWriteBuffer([3]f32, &.{model_color}, .{ .copy_dst = true, .uniform = true });
defer model_color_buffer.release();
const model_bind_group_label = try std.fmt.bufPrintZ(&label_buffer, "Model Bind Group {d}", .{i});
const model_bind_group = core.device.createBindGroup(&gpu.BindGroup.Descriptor.init(.{
.label = model_bind_group_label,
.layout = model_bind_group_layout,
.entries = &.{
gpu.BindGroup.Entry.sampler(0, texture_sampler),
gpu.BindGroup.Entry.textureView(1, texture_view),
gpu.BindGroup.Entry.buffer(2, model_matrix_buffer, 0, @sizeOf(zm.Mat)),
gpu.BindGroup.Entry.buffer(3, model_color_buffer, 0, @sizeOf([3]f32)),
},
}));
// Pick a "random" primitive to use for this object.
const primitive_index = app.random.int(usize) % primitive_data.len;
const primitive = &primitive_data[primitive_index];
// The `*object` syntax gets us a pointer to each element in the
// `object_data` slice, allowing us to override it within the loop.
object.* = .{
.model_bind_group = model_bind_group,
.primitive = primitive,
};
}
// Register components necessary for the camera.
_ = try app.world.component("Transform", Transform);
_ = try app.world.component("CameraPerspective", CameraPerspective);
const camera_entity = try app.world.entity(
.{ .name = "Camera", .symbol = "Camera" },
.{ Transform, CameraPerspective },
);
camera_entity.set(CameraPerspective, .{
.field_of_view = 45.0,
.near_plane = 0.05,
.far_plane = 80.0,
});
const render_expr = "App, [in] CameraPerspective(Camera), [out] Transform(Camera)";
_ = try app.world.system("Render", render, OnStore, render_expr);
const result = try app.allocator.create(Renderer);
result.* = .{
.app = app,
.pipeline = pipeline,
.view_proj_buffer = view_proj_buffer,
.camera_bind_group = camera_bind_group,
.primitive_data = primitive_data,
.object_data = object_data,
};
// Initialize the depth texture.
// This is called also whenever the window is resized.
result.recreateDepthTexture();
return result;
}
pub fn deinit(self: *Renderer) void {
// Using `defer` here, so we can specify resources we
// want to free in the order they were created in `init`.
defer self.app.allocator.destroy(self);
defer self.pipeline.release();
defer self.view_proj_buffer.release();
defer self.camera_bind_group.release();
defer self.app.allocator.free(self.primitive_data);
defer for (self.primitive_data) |p| {
p.vertex_buffer.release();
p.index_buffer.release();
};
defer self.app.allocator.free(self.object_data);
defer for (self.object_data) |o| {
o.model_bind_group.release();
};
defer if (self.depth_texture) |t| t.release();
defer if (self.depth_texture_view) |v| v.release();
}
pub fn resize(self: *Renderer) void {
// Recreate depth texture with the proper size, otherwise
// the application may crash when the window is resized.
self.recreateDepthTexture();
}
pub fn render(it: Iter) void {
const app = it.field(*App, 1)[0];
const camera_perspective = it.field(CameraPerspective, 2)[0];
const camera_transform = &it.field(Transform, 3)[0];
const self = app.renderer;
self.time += it.deltaTime();
// Set up a view matrix from the camera transform.
// This moves everything to be relative to the camera.
// TODO: Actually implement camera transform instead of hardcoding a look-at matrix.
// const view_matrix = zm.inverse(app.camera_transform);
const camera_distance = 8.0;
const x = @cos(self.time * std.math.tau / 20) * camera_distance;
const z = @sin(self.time * std.math.tau / 20) * camera_distance;
const camera_pos = vec(x, 2.0, z, 1.0);
const view_matrix = zm.lookAtLh(camera_pos, vec(0, 0, 0, 1), vec(0, 1, 0, 1));
// Setting the transform here doesn't do anything because it's not used
// anywhere. In the future we would want to set the camera transform
// outside of the rendering step, and then get and use it here, instead.
camera_transform.* = .{ .value = view_matrix };
// TODO: Not sure if this is the proper transform, or actually inverted.
// Set up a projection matrix using the size of the window.
// The perspective projection will make things further away appear smaller.
const width: f32 = @floatFromInt(core.descriptor.width);
const height: f32 = @floatFromInt(core.descriptor.height);
const proj_matrix = zm.perspectiveFovLh(
std.math.degreesToRadians(f32, camera_perspective.field_of_view),
width / height,
camera_perspective.near_plane,
camera_perspective.far_plane,
);
const view_proj_matrix = zm.mul(view_matrix, proj_matrix);
// Get back buffer texture to render to.
const back_buffer_view = core.swap_chain.getCurrentTextureView().?;
defer back_buffer_view.release();
// Once rendering is done (hence `defer`), swap back buffer to the front to display.
defer core.swap_chain.present();
const render_pass_info = gpu.RenderPassDescriptor.init(.{
.color_attachments = &.{.{
.view = back_buffer_view,
.clear_value = std.mem.zeroes(gpu.Color),
.load_op = .clear,
.store_op = .store,
}},
.depth_stencil_attachment = &.{
.view = self.depth_texture_view.?,
.depth_load_op = .clear,
.depth_store_op = .store,
.depth_clear_value = 1.0,
},
});
// Create a `WGPUCommandEncoder` which provides an interface for recording GPU commands.
const encoder = core.device.createCommandEncoder(null);
defer encoder.release();
// Write to the scene uniform buffer for this set of commands.
encoder.writeBuffer(self.view_proj_buffer, 0, &[_]zm.Mat{
// All matrices the GPU has to work with need to be transposed,
// because WebGPU uses column-major matrices while zmath is row-major.
zm.transpose(view_proj_matrix),
});
{
const pass = encoder.beginRenderPass(&render_pass_info);
defer pass.release();
defer pass.end();
pass.setPipeline(self.pipeline);
pass.setBindGroup(0, self.camera_bind_group, &.{});
for (self.object_data) |object| {
// Set the vertex and index buffer used to render this
// object to the ones from the primitive it wants to use.
const prim = object.primitive;
pass.setVertexBuffer(0, prim.vertex_buffer, 0, prim.vertex_count * @sizeOf(VertexData));
pass.setIndexBuffer(prim.index_buffer, .uint32, 0, prim.index_count * @sizeOf(u32));
// Set the bind group for the object we want to render.
pass.setBindGroup(1, object.model_bind_group, &.{});
// Draw a number of triangles as specified in the index buffer.
pass.drawIndexed(prim.index_count, 1, 0, 0, 0);
}
}
// Finish recording commands, creating a `WGPUCommandBuffer`.
var command = encoder.finish(null);
defer command.release();
// Submit the command(s) to the GPU.
core.queue.submit(&.{command});
}
/// Loads a texture from the provided buffer and uploads it to the GPU.
pub fn loadTexture(allocator: std.mem.Allocator, buffer: []const u8) !*gpu.TextureView {
var img = try zigimg.Image.fromMemory(allocator, buffer);
defer img.deinit();
const img_size = gpu.Extent3D{
.width = @intCast(img.width),
.height = @intCast(img.height),
};
const texture = core.device.createTexture(&.{
.size = img_size,
.format = .rgba8_unorm,
.usage = .{
.texture_binding = true,
.copy_dst = true,
.render_attachment = true,
},
});
defer texture.release();
const data_layout = gpu.Texture.DataLayout{
.bytes_per_row = @intCast(img.width * 4),
.rows_per_image = @intCast(img.height),
};
switch (img.pixels) {
.rgba32 => |pixels| {
core.queue.writeTexture(&.{ .texture = texture }, &data_layout, &img_size, pixels);
},
.rgb24 => |pixels_rgb24| {
const pixels = try rgb24ToRgba32(allocator, pixels_rgb24);
defer allocator.free(pixels);
core.queue.writeTexture(&.{ .texture = texture }, &data_layout, &img_size, pixels);
},
else => std.debug.panic("Unsupported image color format {s}", .{@tagName(img.pixels)}),
}
return texture.createView(&.{});
}
/// Converts a raw 24-bit RGB pixel buffer to 32-bit RGBA.
fn rgb24ToRgba32(allocator: std.mem.Allocator, in: []Rgb24) ![]Rgba32 {
const out = try allocator.alloc(Rgba32, in.len);
for (in, out) |src, *dest|
dest.* = .{ .r = src.r, .g = src.g, .b = src.b, .a = 255 };
return out;
}
/// Creates a depth texture. This is used to ensure that when things are
/// rendered, an object behind another won't draw over one in front, simply
/// because it was rendered at a later point in time.
pub fn recreateDepthTexture(self: *Renderer) void {
// Release previous depth butter and view, if any.
if (self.depth_texture) |t| t.release();
if (self.depth_texture_view) |v| v.release();
self.depth_texture = core.device.createTexture(&.{
.label = "Depth Texture",
.usage = .{ .render_attachment = true },
.size = .{ .width = core.descriptor.width, .height = core.descriptor.height },
.format = .depth24_plus,
});
self.depth_texture_view = self.depth_texture.?.createView(null);
}
/// Creates a buffer on the GPU with the specified usage
/// flags and immediately fills it with the provided data.
pub fn createAndWriteBuffer(
comptime T: type,
data: []const T,
usage: gpu.Buffer.UsageFlags,
) *gpu.Buffer {
const buffer = core.device.createBuffer(&.{
.size = data.len * @sizeOf(T),
.usage = usage,
.mapped_at_creation = .false,
});
core.queue.writeBuffer(buffer, 0, data);
return buffer;
}