You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
351 lines
13 KiB
351 lines
13 KiB
const std = @import("std"); |
|
const GeneralPurposeAllocator = std.heap.GeneralPurposeAllocator(.{}); |
|
|
|
const core = @import("mach-core"); |
|
const gpu = core.gpu; |
|
|
|
const zm = @import("zmath"); |
|
const vec = zm.f32x4; |
|
const Mat = zm.Mat; |
|
|
|
const primitives = @import("./primitives.zig"); |
|
const VertexData = primitives.VertexData; |
|
const PrimitiveData = primitives.PrimitiveData; |
|
|
|
/// Holds information about how a perticular scene should be rendered. |
|
const SceneUniformBuffer = struct { |
|
view_proj_matrix: zm.Mat, |
|
}; |
|
|
|
/// Holds information about where and how an object should be rendered. |
|
const ObjectUniformBuffer = struct { |
|
model_matrix: zm.Mat, |
|
color: [3]f32, |
|
}; |
|
|
|
/// Holds data on what is needed to render an object in a rendering pass. |
|
const ObjectData = struct { |
|
/// Reference to data stored on the GPU of type `ObjectUniformBuffer`. |
|
uniform_buffer: *gpu.Buffer, |
|
/// Bind group used to associate the buffer to the `object` shader parameter. |
|
uniform_bind_group: *gpu.BindGroup, |
|
/// Reference to the primitive (shape or model) to render for this object. |
|
primitive: *PrimitiveData, |
|
}; |
|
|
|
pub const App = @This(); |
|
|
|
gpa: GeneralPurposeAllocator, |
|
allocator: std.mem.Allocator, |
|
random: std.rand.Random, |
|
|
|
app_timer: core.Timer, |
|
title_timer: core.Timer, |
|
|
|
depth_texture: *gpu.Texture, |
|
depth_texture_view: *gpu.TextureView, |
|
pipeline: *gpu.RenderPipeline, |
|
scene_uniform_buffer: *gpu.Buffer, |
|
scene_uniform_bind_group: *gpu.BindGroup, |
|
primitive_data: [2]PrimitiveData, |
|
object_data: []ObjectData, |
|
|
|
pub fn init(app: *App) !void { |
|
try core.init(.{}); |
|
|
|
// Set up a "general purpose allocator" that will handle allocations for |
|
// the lifetime of the application, for which a more specific allocation |
|
// strategy is not necessary. |
|
// |
|
// Here, `gpa` is an instance of this allocator, which handles the |
|
// allocation logic, while `allocator` is the interface through which |
|
// functions such as `alloc` and `free` are called. |
|
app.gpa = GeneralPurposeAllocator{}; |
|
app.allocator = app.gpa.allocator(); |
|
|
|
// Create a pseudo-random number generator, but initialize it with |
|
// a constant seed so we always get the same result when launching. |
|
var prng = std.rand.DefaultPrng.init(0); |
|
app.random = prng.random(); |
|
|
|
app.app_timer = try core.Timer.start(); |
|
app.title_timer = try core.Timer.start(); |
|
|
|
// Create a depth texture. This is used to ensure that when things are |
|
// rendered, an object behind another won't draw over one in front, simply |
|
// because it was rendered at a later point in time. |
|
app.depth_texture = core.device.createTexture(&.{ |
|
.usage = .{ .render_attachment = true }, |
|
.size = .{ .width = core.descriptor.width, .height = core.descriptor.height }, |
|
.format = .depth24_plus, |
|
}); |
|
app.depth_texture_view = app.depth_texture.createView(null); |
|
|
|
const shader_module = core.device.createShaderModuleWGSL("shader.wgsl", @embedFile("shader.wgsl")); |
|
defer shader_module.release(); |
|
|
|
// Set up rendering pipeline. |
|
app.pipeline = core.device.createRenderPipeline(&.{ |
|
.vertex = gpu.VertexState.init(.{ |
|
.module = shader_module, |
|
.entry_point = "vertex_main", |
|
.buffers = &.{ |
|
gpu.VertexBufferLayout.init(.{ |
|
.array_stride = @sizeOf(VertexData), |
|
.step_mode = .vertex, |
|
.attributes = &.{ |
|
.{ .format = .float32x3, .shader_location = 0, .offset = @offsetOf(VertexData, "position") }, |
|
}, |
|
}), |
|
}, |
|
}), |
|
.primitive = .{ |
|
.topology = .triangle_list, |
|
.front_face = .ccw, |
|
.cull_mode = .back, |
|
}, |
|
.depth_stencil = &.{ |
|
.format = .depth24_plus, |
|
.depth_write_enabled = .true, |
|
.depth_compare = .less, |
|
}, |
|
.fragment = &gpu.FragmentState.init(.{ |
|
.module = shader_module, |
|
.entry_point = "frag_main", |
|
.targets = &.{.{ .format = core.descriptor.format }}, |
|
}), |
|
}); |
|
|
|
// Set up scene related uniform buffers and bind groups. |
|
{ |
|
const result = createAndWriteUniformBuffer( |
|
app.pipeline.getBindGroupLayout(0), |
|
SceneUniformBuffer{ .view_proj_matrix = zm.identity() }, |
|
); |
|
|
|
app.scene_uniform_buffer = result.buffer; |
|
app.scene_uniform_bind_group = result.bind_group; |
|
} |
|
|
|
// Set up the primitives we want to render. |
|
app.primitive_data = .{ |
|
primitives.createTrianglePrimitive(1.0), |
|
primitives.createSquarePrimitive(1.0), |
|
}; |
|
|
|
// Set up object related uniform buffers and bind groups. |
|
// This uploads data to the GPU about all the object we |
|
// want to render, such as their location and color. |
|
{ |
|
const grid_size = 8; |
|
|
|
// Allocate a slice to store as many ObjectData as we want to create. |
|
// |
|
// Using a slice instead of an array means that we could change how |
|
// many object we want to render at compile time, however it requires |
|
// allocating, and later freeing, memory to store the slice. |
|
app.object_data = try app.allocator.alloc(ObjectData, grid_size * grid_size); |
|
|
|
// Note that for loops in Zig are a little different than you might |
|
// know from other languages. They only look over arrays, slices, |
|
// tuples and ranges, potentially multiple at once. |
|
for (app.object_data, 0..) |*object, i| { |
|
const grid_max: f32 = @floatFromInt(grid_size - 1); |
|
const x = @as(f32, @floatFromInt(i % grid_size)) / grid_max; |
|
const z = @as(f32, @floatFromInt(i / grid_size)) / grid_max; |
|
|
|
const rotation = zm.rotationY(std.math.tau * (x + z) / 2.0); |
|
const translation = zm.translation((x - 0.5) * grid_size, 0, (z - 0.5) * grid_size); |
|
const model_matrix = zm.mul(rotation, translation); |
|
|
|
// Make the object have a color depending on its location in the grid. |
|
// These values are layed out so each corner is red, green, blue and black. |
|
const color = .{ |
|
std.math.clamp(1.0 - x - z, 0.0, 1.0), |
|
std.math.clamp(x - z, 0.0, 1.0), |
|
std.math.clamp(z - x, 0.0, 1.0), |
|
}; |
|
|
|
const result = createAndWriteUniformBuffer( |
|
app.pipeline.getBindGroupLayout(1), |
|
ObjectUniformBuffer{ |
|
.model_matrix = zm.transpose(model_matrix), |
|
.color = color, |
|
}, |
|
); |
|
|
|
// Pick a "random" primitive to use for this object. |
|
const primitive_index = app.random.int(usize) % app.primitive_data.len; |
|
const primitive = &app.primitive_data[primitive_index]; |
|
|
|
// The `*object` syntax gets us a pointer to each element in the |
|
// `object_data` slice, allowing us to override it within the loop. |
|
object.* = .{ |
|
.uniform_buffer = result.buffer, |
|
.uniform_bind_group = result.bind_group, |
|
.primitive = primitive, |
|
}; |
|
} |
|
} |
|
} |
|
|
|
/// Creates a buffer on the GPU to store uniform parameter information as |
|
/// well as a bind group with the specified layout pointing to that buffer. |
|
/// Additionally, immediately fills the buffer with the provided data. |
|
pub fn createAndWriteUniformBuffer( |
|
layout: *gpu.BindGroupLayout, |
|
data: anytype, |
|
) struct { |
|
buffer: *gpu.Buffer, |
|
bind_group: *gpu.BindGroup, |
|
} { |
|
const T = @TypeOf(data); |
|
const usage = gpu.Buffer.UsageFlags{ .copy_dst = true, .uniform = true }; |
|
const buffer = createAndWriteBuffer(T, &.{data}, usage); |
|
|
|
// "Bind groups" are used to associate data from buffers with shader parameters. |
|
// So for example the `scene_uniform_bind_group` is accessible via `scene` in our shader. |
|
// Essentially, buffer = data, and bind group = binding parameter to that data. |
|
const bind_group_entry = gpu.BindGroup.Entry.buffer(0, buffer, 0, @sizeOf(T)); |
|
const bind_group_desc = gpu.BindGroup.Descriptor.init(.{ .layout = layout, .entries = &.{bind_group_entry} }); |
|
const bind_group = core.device.createBindGroup(&bind_group_desc); |
|
|
|
return .{ .buffer = buffer, .bind_group = bind_group }; |
|
} |
|
|
|
/// Creates a buffer on the GPU with the specified usage |
|
/// flags and immediately fills it with the provided data. |
|
pub fn createAndWriteBuffer( |
|
comptime T: type, |
|
data: []const T, |
|
usage: gpu.Buffer.UsageFlags, |
|
) *gpu.Buffer { |
|
const buffer = core.device.createBuffer(&.{ |
|
.size = data.len * @sizeOf(T), |
|
.usage = usage, |
|
.mapped_at_creation = .false, |
|
}); |
|
core.queue.writeBuffer(buffer, 0, data); |
|
return buffer; |
|
} |
|
|
|
pub fn deinit(app: *App) void { |
|
// Using `defer` here, so we can specify them |
|
// in the order they were created in `init`. |
|
defer core.deinit(); |
|
defer _ = app.gpa.deinit(); // TODO: Check for memory leaks? |
|
defer app.depth_texture.release(); |
|
defer app.depth_texture_view.release(); |
|
defer app.pipeline.release(); |
|
defer app.scene_uniform_buffer.release(); |
|
defer app.scene_uniform_bind_group.release(); |
|
defer for (app.primitive_data) |p| { |
|
p.vertex_buffer.release(); |
|
p.index_buffer.release(); |
|
}; |
|
defer app.allocator.free(app.object_data); |
|
defer for (app.object_data) |o| { |
|
o.uniform_buffer.release(); |
|
o.uniform_bind_group.release(); |
|
}; |
|
} |
|
|
|
pub fn update(app: *App) !bool { |
|
var iter = core.pollEvents(); |
|
while (iter.next()) |event| { |
|
switch (event) { |
|
.close => return true, |
|
else => {}, |
|
} |
|
} |
|
|
|
// Set up a view matrix from the camera transform. |
|
// This moves everything to be relative to the camera. |
|
// TODO: Actually implement camera transform instead of hardcoding a look-at matrix. |
|
// const view_matrix = zm.inverse(app.camera_transform); |
|
const time = app.app_timer.read(); |
|
const camera_distance = 8.0; |
|
const x = @cos(time * std.math.tau / 20) * camera_distance; |
|
const z = @sin(time * std.math.tau / 20) * camera_distance; |
|
const camera_pos = vec(x, 2.0, z, 1.0); |
|
const view_matrix = zm.lookAtLh(camera_pos, vec(0, 0, 0, 1), vec(0, 1, 0, 1)); |
|
|
|
// Set up a projection matrix using the size of the window. |
|
// The perspective projection will make things further away appear smaller. |
|
const width: f32 = @floatFromInt(core.descriptor.width); |
|
const height: f32 = @floatFromInt(core.descriptor.height); |
|
const field_of_view = std.math.degreesToRadians(f32, 45.0); |
|
const proj_matrix = zm.perspectiveFovLh(field_of_view, width / height, 0.05, 80.0); |
|
|
|
const view_proj_matrix = zm.mul(view_matrix, proj_matrix); |
|
|
|
// Get back buffer texture to render to. |
|
const back_buffer_view = core.swap_chain.getCurrentTextureView().?; |
|
defer back_buffer_view.release(); |
|
// Once rendering is done (hence `defer`), swap back buffer to the front to display. |
|
defer core.swap_chain.present(); |
|
|
|
const render_pass_info = gpu.RenderPassDescriptor.init(.{ |
|
.color_attachments = &.{.{ |
|
.view = back_buffer_view, |
|
.clear_value = std.mem.zeroes(gpu.Color), |
|
.load_op = .clear, |
|
.store_op = .store, |
|
}}, |
|
.depth_stencil_attachment = &.{ |
|
.view = app.depth_texture_view, |
|
.depth_load_op = .clear, |
|
.depth_store_op = .store, |
|
.depth_clear_value = 1.0, |
|
}, |
|
}); |
|
|
|
// Create a `WGPUCommandEncoder` which provides an interface for recording GPU commands. |
|
const encoder = core.device.createCommandEncoder(null); |
|
defer encoder.release(); |
|
|
|
// Write to the scene uniform buffer for this set of commands. |
|
encoder.writeBuffer(app.scene_uniform_buffer, 0, &[_]SceneUniformBuffer{.{ |
|
// All matrices the GPU has to work with need to be transposed, |
|
// because WebGPU uses column-major matrices while zmath is row-major. |
|
.view_proj_matrix = zm.transpose(view_proj_matrix), |
|
}}); |
|
|
|
{ |
|
const pass = encoder.beginRenderPass(&render_pass_info); |
|
defer pass.release(); |
|
defer pass.end(); |
|
|
|
pass.setPipeline(app.pipeline); |
|
pass.setBindGroup(0, app.scene_uniform_bind_group, &.{}); |
|
|
|
for (app.object_data) |object| { |
|
// Set the vertex and index buffer used to render this object |
|
// to the primitive it wants to use (either triangle or square). |
|
const prim = object.primitive; |
|
pass.setVertexBuffer(0, prim.vertex_buffer, 0, prim.vertex_count * @sizeOf(VertexData)); |
|
pass.setIndexBuffer(prim.index_buffer, .uint32, 0, prim.index_count * @sizeOf(u32)); |
|
|
|
// Set the bind group for an object we want to render. |
|
pass.setBindGroup(1, object.uniform_bind_group, &.{}); |
|
|
|
// Draw a number of triangles as specified in the index buffer. |
|
pass.drawIndexed(prim.index_count, 1, 0, 0, 0); |
|
} |
|
} |
|
|
|
// Finish recording commands, creating a `WGPUCommandBuffer`. |
|
var command = encoder.finish(null); |
|
defer command.release(); |
|
|
|
// Submit the command(s) to the GPU. |
|
core.queue.submit(&.{command}); |
|
|
|
// Update the window title to show FPS and input frequency. |
|
if (app.title_timer.read() >= 1.0) { |
|
app.title_timer.reset(); |
|
try core.printTitle("Triangle [ {d}fps ] [ Input {d}hz ]", .{ core.frameRate(), core.inputRate() }); |
|
} |
|
|
|
return false; |
|
}
|
|
|