You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
336 lines
13 KiB
336 lines
13 KiB
4 weeks ago
|
class_name copyMediaPipe
|
||
|
extends Mod_Base
|
||
|
|
||
|
# FIXME: Best to get this from the tracker process (if possible).
|
||
|
var camera_aspect_ratio := 4.0 / 3.0 # Logitech C920 default?
|
||
|
|
||
|
@onready var tracker_head : Node3D = $TrackingRoot/Head
|
||
|
@onready var tracker_hand_left : Node3D = $TrackingRoot/LeftHand
|
||
|
@onready var tracker_hand_right : Node3D = $TrackingRoot/RightHand
|
||
|
@onready var landmark_template : MeshInstance3D = $TrackingRoot/LandmarkTemplate
|
||
|
@onready var landmarks_hand_left : Array[MeshInstance3D] = []
|
||
|
@onready var landmarks_hand_right : Array[MeshInstance3D] = []
|
||
|
|
||
|
@onready var hands := {
|
||
|
left = {
|
||
|
tracker = tracker_hand_left,
|
||
|
landmarks = landmarks_hand_left,
|
||
|
},
|
||
|
right = {
|
||
|
tracker = tracker_hand_right,
|
||
|
landmarks = landmarks_hand_right,
|
||
|
},
|
||
|
}
|
||
|
|
||
|
func _ready() -> void:
|
||
|
setup_hand_landmarks()
|
||
|
|
||
|
var dir = get_script().get_path().get_base_dir()
|
||
|
var path = dir.path_join("_tracker/Project/new_new_tracker.py")
|
||
|
python_process = KiriPythonWrapperInstance.new(path)
|
||
|
if not python_process.setup_python(false):
|
||
|
OS.alert("Failed to setup tracker dependencies!")
|
||
|
|
||
|
start_process()
|
||
|
# FIXME: Don't hardcode the video device.
|
||
|
set_video_device(get_video_devices()[0])
|
||
|
start_tracker()
|
||
|
|
||
|
func _exit_tree() -> void:
|
||
|
stop_tracker()
|
||
|
stop_process()
|
||
|
|
||
|
# Called after mod is initialized or model is changed.
|
||
|
func scene_init():
|
||
|
pass
|
||
|
|
||
|
# Called before mod is removed, model is changed or application is shut down.
|
||
|
func scene_shutdown():
|
||
|
pass
|
||
|
|
||
|
func _process(_delta: float) -> void:
|
||
|
if is_tracker_running():
|
||
|
receive_tracker_packets()
|
||
|
|
||
|
func setup_hand_landmarks() -> void:
|
||
|
for side in hands:
|
||
|
var hand = hands[side]
|
||
|
for i in 21:
|
||
|
var landmark: MeshInstance3D = landmark_template.duplicate(0)
|
||
|
landmark.position = Vector3.ZERO
|
||
|
landmark.visible = true
|
||
|
hand.tracker.add_child(landmark)
|
||
|
hand.landmarks.append(landmark)
|
||
|
|
||
|
# -----------------------------------------------------------------------------
|
||
|
# Functions to start/stop the PYTHON TRACKER PROCESS and communicate with it.
|
||
|
# -----------------------------------------------------------------------------
|
||
|
|
||
|
var python_process: KiriPythonWrapperInstance
|
||
|
|
||
|
func start_process() -> void:
|
||
|
python_process.start_process(false)
|
||
|
|
||
|
func stop_process() -> void:
|
||
|
python_process.stop_process()
|
||
|
|
||
|
func is_process_running() -> bool:
|
||
|
return python_process.get_status() == KiriPythonWrapperInstance.KiriPythonWrapperStatus.STATUS_RUNNING
|
||
|
|
||
|
# [{ name: String, backend: String, path: String, index: int }]
|
||
|
func get_video_devices() -> Array:
|
||
|
assert(is_process_running())
|
||
|
var devices = python_process.call_rpc_sync("enumerate_camera_devices", [])
|
||
|
return devices if devices is Array else []
|
||
|
|
||
|
func set_video_device(device) -> void:
|
||
|
assert(is_process_running())
|
||
|
var index: int = device.index if device else -1
|
||
|
python_process.call_rpc_sync("set_video_device_number", [ index ])
|
||
|
|
||
|
# -----------------------------------------------------------------------------
|
||
|
# Functions to start/stop the TRACKER and receive packets coming from it.
|
||
|
# -----------------------------------------------------------------------------
|
||
|
|
||
|
var base_port := 7098
|
||
|
var udp_server: PacketPeerUDP
|
||
|
var udp_server_port: int
|
||
|
|
||
|
func start_tracker() -> void:
|
||
|
assert(!is_tracker_running())
|
||
|
|
||
|
udp_server = PacketPeerUDP.new()
|
||
|
# Find a port number that's open to use.
|
||
|
udp_server_port = base_port
|
||
|
while udp_server.bind(udp_server_port, "127.0.0.1") != OK:
|
||
|
udp_server_port += 1
|
||
|
|
||
|
python_process.call_rpc_sync("set_udp_port_number", [ udp_server_port ])
|
||
|
python_process.call_rpc_sync("start_tracker", [])
|
||
|
|
||
|
func stop_tracker() -> void:
|
||
|
if !is_tracker_running(): return # Do nothing if tracker isn't running.
|
||
|
python_process.call_rpc_sync("stop_tracker", [])
|
||
|
udp_server.close()
|
||
|
udp_server = null
|
||
|
|
||
|
func is_tracker_running() -> bool:
|
||
|
return udp_server != null
|
||
|
|
||
|
func receive_tracker_packets() -> void:
|
||
|
assert(is_tracker_running())
|
||
|
while true:
|
||
|
var bytes := udp_server.get_packet()
|
||
|
if bytes.size() == 0: break
|
||
|
var data = JSON.parse_string(bytes.get_string_from_utf8())
|
||
|
if data is Dictionary: process_tracker_data(data)
|
||
|
|
||
|
# -----------------------------------------------------------------------------
|
||
|
# Functions to PROCESS the incoming TRACKER DATA, and update tracker objects.
|
||
|
# -----------------------------------------------------------------------------
|
||
|
|
||
|
func process_tracker_data(data: Dictionary) -> void:
|
||
|
if "error" in data: on_tracker_error(data.error); return
|
||
|
if "status" in data: on_tracker_status(data.status); return
|
||
|
convert_tracker_data(data)
|
||
|
|
||
|
# MediaPipe reports hands from a viewer's perspective, not the
|
||
|
# person's own actual left and right hand, so swap them out here.
|
||
|
var left = data["hands"]["left"]
|
||
|
var right = data["hands"]["right"]
|
||
|
data["hands"]["left"] = right
|
||
|
data["hands"]["right"] = left
|
||
|
|
||
|
tracker_head.transform = data["face"]["transform"]
|
||
|
tracker_head.position /= 100 # Centimeters to meters.
|
||
|
|
||
|
# TODO: Actually use this.
|
||
|
var num_hands_detected := 0
|
||
|
for side in hands:
|
||
|
var hand = hands[side]
|
||
|
var tracker: Node3D = hand.tracker
|
||
|
|
||
|
# TODO: Don't automatically trust the handedness of the input data.
|
||
|
var hand_data = data["hands"][side]
|
||
|
var image_landmarks: Array[Vector3] = hand_data["image_landmarks"]
|
||
|
var world_landmarks: Array[Vector3] = hand_data["world_landmarks"]
|
||
|
|
||
|
# FIXME: Make this configurable.
|
||
|
var min_confidence_threshold := 0.85
|
||
|
if hand_data["confidence"] < min_confidence_threshold: continue
|
||
|
num_hands_detected += 1
|
||
|
|
||
|
# Mirror position on the X axis, since image landmarks are in view space.
|
||
|
for i in image_landmarks.size(): image_landmarks[i].x = (1 - image_landmarks[i].x)
|
||
|
|
||
|
tracker.basis = get_hand_rotation(world_landmarks)
|
||
|
tracker.position = get_hand_viewspace_origin(image_landmarks, world_landmarks, 2.0) \
|
||
|
* Vector3(7.0, 7.0, 3.5) # FIXME: Fudge factor to match better with world space.
|
||
|
|
||
|
# Translate landmarks so the origin is at the wrist.
|
||
|
var wrist_position := world_landmarks[0]
|
||
|
# World landmarks are in world space, so we have to "subtract" the hand rotation.
|
||
|
# Also, the rotation is all wrong, so apply that here as well.
|
||
|
var hand_rotation := tracker.basis.inverse() * Basis.from_euler(Vector3(TAU / 2, 0, 0))
|
||
|
for i in world_landmarks.size():
|
||
|
var pos := world_landmarks[i] - wrist_position
|
||
|
hand.landmarks[i].position = hand_rotation * pos
|
||
|
|
||
|
# TODO: Interpolation needs to be done outside of this function,
|
||
|
# as it could be called multiple times a frame, or not at all.
|
||
|
|
||
|
# Smoothly interpolate tracker transforms (in a framerate-independent way).
|
||
|
# var f := 0.0000000001 # Yes this value needs to be THAT small.
|
||
|
# tracker_head .transform = tracker_head .transform.interpolate_with(head_transform , 1 - f ** delta)
|
||
|
# tracker_hand_left .transform = tracker_hand_left .transform.interpolate_with(hand_left_transform , 1 - f ** delta)
|
||
|
# tracker_hand_right.transform = tracker_hand_right.transform.interpolate_with(hand_right_transform, 1 - f ** delta)
|
||
|
|
||
|
func on_tracker_status(status: String) -> void:
|
||
|
set_status(status)
|
||
|
|
||
|
func on_tracker_error(error: String) -> void:
|
||
|
print_log("Error: " + error)
|
||
|
|
||
|
# -----------------------------------------------------------------------------
|
||
|
# Functions that deal with CONVERTING the TRACKER DATA to Godot types.
|
||
|
# -----------------------------------------------------------------------------
|
||
|
|
||
|
## Converts the arrays inside data to known data types like Vector3 and Transform3D.
|
||
|
func convert_tracker_data(data: Dictionary) -> void:
|
||
|
data["face"]["transform"] = to_transform(data["face"]["transform"])
|
||
|
for side in data["hands"]:
|
||
|
var hand = data["hands"][side]
|
||
|
# Convert untyped array of arrays to typed Array[Vector3].
|
||
|
var image_landmarks = hand["image_landmarks"].map(to_vector)
|
||
|
var world_landmarks = hand["world_landmarks"].map(to_vector)
|
||
|
hand["image_landmarks"] = Array(image_landmarks, TYPE_VECTOR3, "", null)
|
||
|
hand["world_landmarks"] = Array(world_landmarks, TYPE_VECTOR3, "", null)
|
||
|
|
||
|
func to_vector(array) -> Vector3:
|
||
|
return Vector3(array[0], array[1], array[2])
|
||
|
|
||
|
func to_transform(matrix) -> Transform3D:
|
||
|
return Transform3D(
|
||
|
Basis(Vector3(matrix[0][0], matrix[1][0], matrix[2][0]),
|
||
|
Vector3(matrix[0][1], matrix[1][1], matrix[2][1]),
|
||
|
Vector3(matrix[0][2], matrix[1][2], matrix[2][2])),
|
||
|
Vector3(matrix[0][3], matrix[1][3], matrix[2][3]))
|
||
|
|
||
|
# -----------------------------------------------------------------------------
|
||
|
# -----------------------------------------------------------------------------
|
||
|
|
||
|
const WRIST := 0
|
||
|
const THUMB_CMC := 1
|
||
|
const THUMB_MCP := 2
|
||
|
const THUMB_IP := 3
|
||
|
const THUMB_TIP := 4
|
||
|
const INDEX_FINGER_MCP := 5
|
||
|
const INDEX_FINGER_PIP := 6
|
||
|
const INDEX_FINGER_DIP := 7
|
||
|
const INDEX_FINGER_TIP := 8
|
||
|
const MIDDLE_FINGER_MCP := 9
|
||
|
const MIDDLE_FINGER_PIP := 10
|
||
|
const MIDDLE_FINGER_DIP := 12
|
||
|
const MIDDLE_FINGER_TIP := 13
|
||
|
const RING_FINGER_MCP := 14
|
||
|
const RING_FINGER_PIP := 15
|
||
|
const RING_FINGER_DIP := 16
|
||
|
const RING_FINGER_TIP := 17
|
||
|
const PINKY_MCP := 18
|
||
|
const PINKY_PIP := 19
|
||
|
const PINKY_DIP := 20
|
||
|
const PINKY_TIP := 21
|
||
|
|
||
|
# FIXME: I changed the way this was calculated and it doesn't quite fit the data right?
|
||
|
func get_hand_rotation(landmarks: Array[Vector3]) -> Basis:
|
||
|
var knuckles_center := (landmarks[INDEX_FINGER_MCP] + landmarks[RING_FINGER_TIP]) / 2
|
||
|
var wrist_to_knuckles := landmarks[WRIST].direction_to(knuckles_center)
|
||
|
var towards_thumb := landmarks[RING_FINGER_TIP].direction_to(landmarks[INDEX_FINGER_MCP])
|
||
|
|
||
|
var up := wrist_to_knuckles.cross(towards_thumb)
|
||
|
return Basis.looking_at(wrist_to_knuckles, up, true)
|
||
|
|
||
|
## Attempt to figure out the hand origin in viewspace.
|
||
|
## `hand_to_head_scale` is a fudge value so that we can attempt
|
||
|
## to force the hand and head into the same scale range, roughly.
|
||
|
func get_hand_viewspace_origin(
|
||
|
image_landmarks: Array[Vector3],
|
||
|
_world_landmarks: Array[Vector3],
|
||
|
hand_to_head_scale: float,
|
||
|
) -> Vector3:
|
||
|
# Values found through experimentation.
|
||
|
var known_distances := [
|
||
|
[ WRIST , THUMB_CMC , 0.053861 ],
|
||
|
[ THUMB_CMC , THUMB_MCP , 0.057096 ],
|
||
|
[ THUMB_MCP , THUMB_IP , 0.048795 ],
|
||
|
[ THUMB_IP , THUMB_TIP , 0.039851 ],
|
||
|
[ WRIST , INDEX_FINGER_MCP , 0.152538 ],
|
||
|
[ WRIST , RING_FINGER_TIP , 0.138711 ],
|
||
|
[ INDEX_FINGER_MCP , MIDDLE_FINGER_MCP , 0.029368 ],
|
||
|
[ MIDDLE_FINGER_MCP , MIDDLE_FINGER_TIP , 0.027699 ],
|
||
|
[ MIDDLE_FINGER_TIP , RING_FINGER_TIP , 0.032673 ],
|
||
|
]
|
||
|
# FIXME: Hardcoded fudge-factor
|
||
|
for d in known_distances: d[2] *= 0.25
|
||
|
|
||
|
# Iterate through known distances and add up the weighted average.
|
||
|
var fake_z_avg := 0.0
|
||
|
var total_avg_weight := 0.0
|
||
|
for d in known_distances:
|
||
|
var pt0 := image_landmarks[d[0]]
|
||
|
var pt1 := image_landmarks[d[1]]
|
||
|
|
||
|
# Figure out a weighted average based on how much the vector
|
||
|
# is facing the camera Z axis. Stuff facing into the camera
|
||
|
# has less accurate results, so weight it lower.
|
||
|
var normvec := (pt0 - pt1).normalized()
|
||
|
var weight := clampf(1.0 - 2.0 * abs(normvec[2]), 0.0, 1.0)
|
||
|
|
||
|
# Add to the average.
|
||
|
fake_z_avg += guess_depth_from_known_distance(
|
||
|
pt0, pt1, d[2] / hand_to_head_scale) * weight
|
||
|
total_avg_weight += weight
|
||
|
|
||
|
if abs(total_avg_weight) < 0.000001:
|
||
|
print("HEY THE THING HAPPENED", total_avg_weight)
|
||
|
# FIXME: Fudge value because I'm tired of this thing throwing
|
||
|
# exceptions all the time. Do an actual fix later.
|
||
|
total_avg_weight = 0.01
|
||
|
|
||
|
# Finish the average.
|
||
|
fake_z_avg = fake_z_avg / total_avg_weight
|
||
|
|
||
|
return ndc_to_viewspace(image_landmarks[0], -fake_z_avg)
|
||
|
|
||
|
## Figure out a depth value based on the distance between known
|
||
|
## normalized (clip-space) coordinates of landmarks, compared to what
|
||
|
## we would expect the average distance between those points to be.
|
||
|
func guess_depth_from_known_distance(left: Vector3, right: Vector3, distance: float) -> float:
|
||
|
var dist_clip := left - right
|
||
|
dist_clip.x *= camera_aspect_ratio # FIXME: Fudge factor
|
||
|
return 1.0 / (dist_clip.length() / distance)
|
||
|
|
||
|
func ndc_to_viewspace(v: Vector3, z_offset: float) -> Vector3:
|
||
|
# This (px, py) is pretty important and Google's
|
||
|
# documentation didn't give much useful info about it.
|
||
|
var px := 0.5
|
||
|
var py := 0.5
|
||
|
|
||
|
# These default to 1.0, 1.0 according to Google's docs.
|
||
|
# I guess that's probably fine for default camera stuff.
|
||
|
var fx := 1.0
|
||
|
var fy := camera_aspect_ratio
|
||
|
|
||
|
# Inverse equation from the section on NDC space here
|
||
|
# https://google.github.io/mediapipe/solutions/objectron.html#coordinate-systems
|
||
|
# https://web.archive.org/web/20220727063132/https://google.github.io/mediapipe/solutions/objectron.html#coordinate-systems
|
||
|
# which describes going from camera coordinates to NDC space. It's kinda
|
||
|
# ambiguous on terms, but this seems to work to get view space coordinates.
|
||
|
|
||
|
# With this, coordinates seem to be evenly scaled (between x/y and z) and in view space.
|
||
|
var z_scale := 1.0
|
||
|
var z := 1.0 / (-v[2] + (1.0 / z_offset) * z_scale)
|
||
|
var x := (v[0] - px) * z / fx
|
||
|
var y := (v[1] - py) * z / fy
|
||
|
return Vector3(x, y, z)
|