class_name copyMediaPipe extends Mod_Base # FIXME: Best to get this from the tracker process (if possible). var camera_aspect_ratio := 4.0 / 3.0 # Logitech C920 default? @onready var tracker_head : Node3D = $TrackingRoot/Head @onready var tracker_hand_left : Node3D = $TrackingRoot/LeftHand @onready var tracker_hand_right : Node3D = $TrackingRoot/RightHand @onready var landmark_template : MeshInstance3D = $TrackingRoot/LandmarkTemplate @onready var landmarks_hand_left : Array[MeshInstance3D] = [] @onready var landmarks_hand_right : Array[MeshInstance3D] = [] @onready var hands := { left = { tracker = tracker_hand_left, landmarks = landmarks_hand_left, }, right = { tracker = tracker_hand_right, landmarks = landmarks_hand_right, }, } func _ready() -> void: setup_hand_landmarks() var dir = get_script().get_path().get_base_dir() var path = dir.path_join("_tracker/Project/new_new_tracker.py") python_process = KiriPythonWrapperInstance.new(path) if not python_process.setup_python(false): OS.alert("Failed to setup tracker dependencies!") start_process() # FIXME: Don't hardcode the video device. set_video_device(get_video_devices()[0]) start_tracker() func _exit_tree() -> void: stop_tracker() stop_process() # Called after mod is initialized or model is changed. func scene_init(): pass # Called before mod is removed, model is changed or application is shut down. func scene_shutdown(): pass func _process(_delta: float) -> void: if is_tracker_running(): receive_tracker_packets() func setup_hand_landmarks() -> void: for side in hands: var hand = hands[side] for i in 21: var landmark: MeshInstance3D = landmark_template.duplicate(0) landmark.position = Vector3.ZERO landmark.visible = true hand.tracker.add_child(landmark) hand.landmarks.append(landmark) # ----------------------------------------------------------------------------- # Functions to start/stop the PYTHON TRACKER PROCESS and communicate with it. # ----------------------------------------------------------------------------- var python_process: KiriPythonWrapperInstance func start_process() -> void: python_process.start_process(false) func stop_process() -> void: python_process.stop_process() func is_process_running() -> bool: return python_process.get_status() == KiriPythonWrapperInstance.KiriPythonWrapperStatus.STATUS_RUNNING # [{ name: String, backend: String, path: String, index: int }] func get_video_devices() -> Array: assert(is_process_running()) var devices = python_process.call_rpc_sync("enumerate_camera_devices", []) return devices if devices is Array else [] func set_video_device(device) -> void: assert(is_process_running()) var index: int = device.index if device else -1 python_process.call_rpc_sync("set_video_device_number", [ index ]) # ----------------------------------------------------------------------------- # Functions to start/stop the TRACKER and receive packets coming from it. # ----------------------------------------------------------------------------- var base_port := 7098 var udp_server: PacketPeerUDP var udp_server_port: int func start_tracker() -> void: assert(!is_tracker_running()) udp_server = PacketPeerUDP.new() # Find a port number that's open to use. udp_server_port = base_port while udp_server.bind(udp_server_port, "127.0.0.1") != OK: udp_server_port += 1 python_process.call_rpc_sync("set_udp_port_number", [ udp_server_port ]) python_process.call_rpc_sync("start_tracker", []) func stop_tracker() -> void: if !is_tracker_running(): return # Do nothing if tracker isn't running. python_process.call_rpc_sync("stop_tracker", []) udp_server.close() udp_server = null func is_tracker_running() -> bool: return udp_server != null func receive_tracker_packets() -> void: assert(is_tracker_running()) while true: var bytes := udp_server.get_packet() if bytes.size() == 0: break var data = JSON.parse_string(bytes.get_string_from_utf8()) if data is Dictionary: process_tracker_data(data) # ----------------------------------------------------------------------------- # Functions to PROCESS the incoming TRACKER DATA, and update tracker objects. # ----------------------------------------------------------------------------- func process_tracker_data(data: Dictionary) -> void: if "error" in data: on_tracker_error(data.error); return if "status" in data: on_tracker_status(data.status); return convert_tracker_data(data) # MediaPipe reports hands from a viewer's perspective, not the # person's own actual left and right hand, so swap them out here. var left = data["hands"]["left"] var right = data["hands"]["right"] data["hands"]["left"] = right data["hands"]["right"] = left tracker_head.transform = data["face"]["transform"] tracker_head.position /= 100 # Centimeters to meters. # TODO: Actually use this. var num_hands_detected := 0 for side in hands: var hand = hands[side] var tracker: Node3D = hand.tracker # TODO: Don't automatically trust the handedness of the input data. var hand_data = data["hands"][side] var image_landmarks: Array[Vector3] = hand_data["image_landmarks"] var world_landmarks: Array[Vector3] = hand_data["world_landmarks"] # FIXME: Make this configurable. var min_confidence_threshold := 0.85 if hand_data["confidence"] < min_confidence_threshold: continue num_hands_detected += 1 # Mirror position on the X axis, since image landmarks are in view space. for i in image_landmarks.size(): image_landmarks[i].x = (1 - image_landmarks[i].x) tracker.basis = get_hand_rotation(world_landmarks) tracker.position = get_hand_viewspace_origin(image_landmarks, world_landmarks, 2.0) \ * Vector3(7.0, 7.0, 3.5) # FIXME: Fudge factor to match better with world space. # Translate landmarks so the origin is at the wrist. var wrist_position := world_landmarks[0] # World landmarks are in world space, so we have to "subtract" the hand rotation. # Also, the rotation is all wrong, so apply that here as well. var hand_rotation := tracker.basis.inverse() * Basis.from_euler(Vector3(TAU / 2, 0, 0)) for i in world_landmarks.size(): var pos := world_landmarks[i] - wrist_position hand.landmarks[i].position = hand_rotation * pos # TODO: Interpolation needs to be done outside of this function, # as it could be called multiple times a frame, or not at all. # Smoothly interpolate tracker transforms (in a framerate-independent way). # var f := 0.0000000001 # Yes this value needs to be THAT small. # tracker_head .transform = tracker_head .transform.interpolate_with(head_transform , 1 - f ** delta) # tracker_hand_left .transform = tracker_hand_left .transform.interpolate_with(hand_left_transform , 1 - f ** delta) # tracker_hand_right.transform = tracker_hand_right.transform.interpolate_with(hand_right_transform, 1 - f ** delta) func on_tracker_status(status: String) -> void: set_status(status) func on_tracker_error(error: String) -> void: print_log("Error: " + error) # ----------------------------------------------------------------------------- # Functions that deal with CONVERTING the TRACKER DATA to Godot types. # ----------------------------------------------------------------------------- ## Converts the arrays inside data to known data types like Vector3 and Transform3D. func convert_tracker_data(data: Dictionary) -> void: data["face"]["transform"] = to_transform(data["face"]["transform"]) for side in data["hands"]: var hand = data["hands"][side] # Convert untyped array of arrays to typed Array[Vector3]. var image_landmarks = hand["image_landmarks"].map(to_vector) var world_landmarks = hand["world_landmarks"].map(to_vector) hand["image_landmarks"] = Array(image_landmarks, TYPE_VECTOR3, "", null) hand["world_landmarks"] = Array(world_landmarks, TYPE_VECTOR3, "", null) func to_vector(array) -> Vector3: return Vector3(array[0], array[1], array[2]) func to_transform(matrix) -> Transform3D: return Transform3D( Basis(Vector3(matrix[0][0], matrix[1][0], matrix[2][0]), Vector3(matrix[0][1], matrix[1][1], matrix[2][1]), Vector3(matrix[0][2], matrix[1][2], matrix[2][2])), Vector3(matrix[0][3], matrix[1][3], matrix[2][3])) # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- const WRIST := 0 const THUMB_CMC := 1 const THUMB_MCP := 2 const THUMB_IP := 3 const THUMB_TIP := 4 const INDEX_FINGER_MCP := 5 const INDEX_FINGER_PIP := 6 const INDEX_FINGER_DIP := 7 const INDEX_FINGER_TIP := 8 const MIDDLE_FINGER_MCP := 9 const MIDDLE_FINGER_PIP := 10 const MIDDLE_FINGER_DIP := 12 const MIDDLE_FINGER_TIP := 13 const RING_FINGER_MCP := 14 const RING_FINGER_PIP := 15 const RING_FINGER_DIP := 16 const RING_FINGER_TIP := 17 const PINKY_MCP := 18 const PINKY_PIP := 19 const PINKY_DIP := 20 const PINKY_TIP := 21 # FIXME: I changed the way this was calculated and it doesn't quite fit the data right? func get_hand_rotation(landmarks: Array[Vector3]) -> Basis: var knuckles_center := (landmarks[INDEX_FINGER_MCP] + landmarks[RING_FINGER_TIP]) / 2 var wrist_to_knuckles := landmarks[WRIST].direction_to(knuckles_center) var towards_thumb := landmarks[RING_FINGER_TIP].direction_to(landmarks[INDEX_FINGER_MCP]) var up := wrist_to_knuckles.cross(towards_thumb) return Basis.looking_at(wrist_to_knuckles, up, true) ## Attempt to figure out the hand origin in viewspace. ## `hand_to_head_scale` is a fudge value so that we can attempt ## to force the hand and head into the same scale range, roughly. func get_hand_viewspace_origin( image_landmarks: Array[Vector3], _world_landmarks: Array[Vector3], hand_to_head_scale: float, ) -> Vector3: # Values found through experimentation. var known_distances := [ [ WRIST , THUMB_CMC , 0.053861 ], [ THUMB_CMC , THUMB_MCP , 0.057096 ], [ THUMB_MCP , THUMB_IP , 0.048795 ], [ THUMB_IP , THUMB_TIP , 0.039851 ], [ WRIST , INDEX_FINGER_MCP , 0.152538 ], [ WRIST , RING_FINGER_TIP , 0.138711 ], [ INDEX_FINGER_MCP , MIDDLE_FINGER_MCP , 0.029368 ], [ MIDDLE_FINGER_MCP , MIDDLE_FINGER_TIP , 0.027699 ], [ MIDDLE_FINGER_TIP , RING_FINGER_TIP , 0.032673 ], ] # FIXME: Hardcoded fudge-factor for d in known_distances: d[2] *= 0.25 # Iterate through known distances and add up the weighted average. var fake_z_avg := 0.0 var total_avg_weight := 0.0 for d in known_distances: var pt0 := image_landmarks[d[0]] var pt1 := image_landmarks[d[1]] # Figure out a weighted average based on how much the vector # is facing the camera Z axis. Stuff facing into the camera # has less accurate results, so weight it lower. var normvec := (pt0 - pt1).normalized() var weight := clampf(1.0 - 2.0 * abs(normvec[2]), 0.0, 1.0) # Add to the average. fake_z_avg += guess_depth_from_known_distance( pt0, pt1, d[2] / hand_to_head_scale) * weight total_avg_weight += weight if abs(total_avg_weight) < 0.000001: print("HEY THE THING HAPPENED", total_avg_weight) # FIXME: Fudge value because I'm tired of this thing throwing # exceptions all the time. Do an actual fix later. total_avg_weight = 0.01 # Finish the average. fake_z_avg = fake_z_avg / total_avg_weight return ndc_to_viewspace(image_landmarks[0], -fake_z_avg) ## Figure out a depth value based on the distance between known ## normalized (clip-space) coordinates of landmarks, compared to what ## we would expect the average distance between those points to be. func guess_depth_from_known_distance(left: Vector3, right: Vector3, distance: float) -> float: var dist_clip := left - right dist_clip.x *= camera_aspect_ratio # FIXME: Fudge factor return 1.0 / (dist_clip.length() / distance) func ndc_to_viewspace(v: Vector3, z_offset: float) -> Vector3: # This (px, py) is pretty important and Google's # documentation didn't give much useful info about it. var px := 0.5 var py := 0.5 # These default to 1.0, 1.0 according to Google's docs. # I guess that's probably fine for default camera stuff. var fx := 1.0 var fy := camera_aspect_ratio # Inverse equation from the section on NDC space here # https://google.github.io/mediapipe/solutions/objectron.html#coordinate-systems # https://web.archive.org/web/20220727063132/https://google.github.io/mediapipe/solutions/objectron.html#coordinate-systems # which describes going from camera coordinates to NDC space. It's kinda # ambiguous on terms, but this seems to work to get view space coordinates. # With this, coordinates seem to be evenly scaled (between x/y and z) and in view space. var z_scale := 1.0 var z := 1.0 / (-v[2] + (1.0 / z_offset) * z_scale) var x := (v[0] - px) * z / fx var y := (v[1] - py) * z / fy return Vector3(x, y, z)