You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
498 lines
19 KiB
498 lines
19 KiB
class_name copyMediaPipe |
|
extends Mod_Base |
|
|
|
var Blendshapes = preload("res://Mods/MediaPipe/MediaPipeController_BlendShapes.gd") |
|
|
|
# ----------------------------------------------------------------------------- |
|
# Potentially configurable variables. |
|
# ----------------------------------------------------------------------------- |
|
|
|
enum BlendshapeMode { NONE, MEDIA_PIPE, VRM_STANDARD } |
|
var blendshape_mode := BlendshapeMode.VRM_STANDARD |
|
|
|
var arm_rest_angle := 65 |
|
var interpolation_factor := 0.000000001 # Yes this value needs to be THAT small. |
|
var rest_interpolation_factor := 0.2 # "Lerp about 80% of the way in one second." |
|
var min_confidence_threshold := 0.85 |
|
var time_to_rest := 0.1 # Time without tracking data before returning to the rest pose. |
|
|
|
# TODO: Change this via calibration! |
|
var camera_transform := Transform3D(Basis(), Vector3(0.0, 0.0, 0.3)) |
|
|
|
# ----------------------------------------------------------------------------- |
|
# ----------------------------------------------------------------------------- |
|
|
|
# FIXME: Best to get this from the tracker process (if possible). |
|
var camera_aspect_ratio := 4.0 / 3.0 # Logitech C920 default? |
|
|
|
# TODO: Ensure that this works with the model offset from the world origin. |
|
var ik_chains: Array[copyMediaPipe_IKChain] = [] |
|
|
|
@onready var tracking_root: Node3D = $TrackingRoot |
|
@onready var landmark_template: MeshInstance3D = $TrackingRoot/LandmarkTemplate |
|
|
|
@onready var head := { |
|
last_data = null, # Most recent tracking data received. |
|
last_received = INF, # How long ago it was received (in seconds). |
|
tracker = $TrackingRoot/Head, # Node for visualizing tracking data. |
|
rest_pose = Transform3D.IDENTITY, # Rest position of the head. |
|
} |
|
|
|
@onready var hands := { |
|
left = { |
|
last_data = null, |
|
last_received = INF, |
|
tracker = $TrackingRoot/LeftHand, |
|
rest_pose = Transform3D.IDENTITY, |
|
landmarks = [], |
|
}, |
|
right = { |
|
last_data = null, |
|
last_received = INF, |
|
tracker = $TrackingRoot/RightHand, |
|
rest_pose = Transform3D.IDENTITY, |
|
landmarks = [], |
|
}, |
|
} |
|
|
|
# ----------------------------------------------------------------------------- |
|
# ----------------------------------------------------------------------------- |
|
|
|
func _ready() -> void: |
|
setup_hand_landmarks() |
|
|
|
var dir = get_script().get_path().get_base_dir() |
|
var path = dir.path_join("_tracker/Project/new_new_tracker.py") |
|
python_process = KiriPythonWrapperInstance.new(path) |
|
if not python_process.setup_python(false): |
|
OS.alert("Failed to setup tracker dependencies!") |
|
|
|
start_process() |
|
# FIXME: Don't hardcode the video device. |
|
set_video_device(get_video_devices()[0]) |
|
start_tracker() |
|
|
|
func _exit_tree() -> void: |
|
stop_tracker() |
|
stop_process() |
|
|
|
# Called after mod is initialized or model is changed. |
|
func scene_init() -> void: |
|
initialize_rest_pose() |
|
initialize_ik_chains() |
|
|
|
# Called before mod is removed, model is changed or application is shut down. |
|
func scene_shutdown() -> void: |
|
ik_chains = [] |
|
|
|
func _process(delta: float) -> void: |
|
increase_last_received(delta) |
|
if is_tracker_running(): |
|
receive_tracker_packets() |
|
update_visual_trackers(delta) |
|
update_ik_chains() |
|
update_blendshapes() |
|
|
|
## Sets up 21 nodes for the landmarks that make up hand/finger tracking. |
|
func setup_hand_landmarks() -> void: |
|
for side in hands: |
|
var hand = hands[side] |
|
for i in 21: |
|
var landmark: MeshInstance3D = landmark_template.duplicate(0) |
|
landmark.position = Vector3.ZERO |
|
landmark.visible = true |
|
hand.tracker.add_child(landmark) |
|
hand.landmarks.append(landmark) |
|
|
|
# ----------------------------------------------------------------------------- |
|
# Initialization functions that are called when a new model is loaded. |
|
# ----------------------------------------------------------------------------- |
|
|
|
## Initialized the stored rest positions for the head and hands. |
|
## Also applies a rotation to the arms so they're not T-posing. |
|
func initialize_rest_pose() -> void: |
|
var skel := get_skeleton() |
|
if not skel: return |
|
|
|
var head_idx := skel.find_bone("Head") |
|
var head_rest := skel.get_bone_global_rest(head_idx) |
|
|
|
# Move the tracking root such that it is at the height of the head. |
|
tracking_root.transform = camera_transform * head_rest |
|
|
|
head.rest_pose = tracking_root.transform.inverse() * head_rest |
|
|
|
for side in hands: |
|
var shoulder_idx := skel.find_bone(side.capitalize() + "Shoulder") |
|
var hand_idx := skel.find_bone(side.capitalize() + "Hand") |
|
var shoulder_rest := skel.get_bone_global_rest(shoulder_idx) |
|
var hand_rest := skel.get_bone_global_rest(hand_idx) |
|
|
|
# First, get relative transform of hand to shoulder. |
|
var hand_to_shoulder := shoulder_rest.inverse() * hand_rest |
|
# Next, rotate this relative transform by arm_rest_angle. |
|
hand_to_shoulder = hand_to_shoulder.rotated(Vector3.LEFT, deg_to_rad(arm_rest_angle)) |
|
# Finally, put the relative transform back into skeleton-relative coordinates. |
|
var new_hand_transform := shoulder_rest * hand_to_shoulder |
|
|
|
hands[side].rest_pose = tracking_root.transform.inverse() * new_hand_transform |
|
|
|
## Sets up the inverse kinematics chains to move the model depending on the location of the visual trackers. |
|
func initialize_ik_chains() -> void: |
|
ik_chains = [] |
|
|
|
var chain_spine := copyMediaPipe_IKChain.new() |
|
chain_spine.skeleton = get_skeleton() |
|
chain_spine.base_bone = "Hips" |
|
chain_spine.tip_bone = "Head" |
|
chain_spine.rotation_low = 0.0 * TAU |
|
chain_spine.rotation_high = 1.0 * TAU |
|
chain_spine.do_yaw = true |
|
chain_spine.main_axis_of_rotation = Vector3.RIGHT |
|
chain_spine.secondary_axis_of_rotation = Vector3.UP |
|
chain_spine.pole_direction_target = Vector3.ZERO # No pole target. |
|
chain_spine.tracker_object = head.tracker |
|
chain_spine.yaw_scale = 0.25 # chest_yaw_scale (Unsure what this does.) |
|
ik_chains.append(chain_spine) |
|
|
|
var x_pole_dist = 10.0 |
|
var y_pole_dist = 5.0 |
|
var z_pole_dist = 10.0 |
|
var arm_rotation_axis = Vector3.UP |
|
|
|
for side in hands: |
|
var hand = hands[side] |
|
|
|
var chain_hand := copyMediaPipe_IKChain.new() |
|
chain_hand.skeleton = get_skeleton() |
|
chain_hand.base_bone = side.capitalize() + "UpperArm" |
|
chain_hand.tip_bone = side.capitalize() + "Hand" |
|
chain_hand.rotation_low = 0.025 * TAU |
|
chain_hand.rotation_high = 0.990 * TAU |
|
chain_hand.do_yaw = false |
|
chain_hand.do_bone_roll = true |
|
chain_hand.secondary_axis_of_rotation = Vector3.UP |
|
|
|
if side == "left": |
|
chain_hand.main_axis_of_rotation = -arm_rotation_axis |
|
chain_hand.pole_direction_target = Vector3(x_pole_dist, -y_pole_dist, -z_pole_dist) |
|
chain_hand.tracker_object = hand.tracker |
|
else: |
|
chain_hand.main_axis_of_rotation = arm_rotation_axis |
|
chain_hand.pole_direction_target = Vector3(-x_pole_dist, -y_pole_dist, -z_pole_dist) |
|
chain_hand.tracker_object = hand.tracker |
|
|
|
ik_chains.append(chain_hand) |
|
|
|
# ----------------------------------------------------------------------------- |
|
# Functions to start/stop the PYTHON TRACKER PROCESS and communicate with it. |
|
# ----------------------------------------------------------------------------- |
|
|
|
var python_process: KiriPythonWrapperInstance |
|
|
|
func start_process() -> void: |
|
python_process.start_process(false) |
|
|
|
func stop_process() -> void: |
|
python_process.stop_process() |
|
|
|
func is_process_running() -> bool: |
|
return python_process.get_status() == KiriPythonWrapperInstance.KiriPythonWrapperStatus.STATUS_RUNNING |
|
|
|
# [{ name: String, backend: String, path: String, index: int }] |
|
func get_video_devices() -> Array: |
|
assert(is_process_running()) |
|
var devices = python_process.call_rpc_sync("enumerate_camera_devices", []) |
|
return devices if devices is Array else [] |
|
|
|
func set_video_device(device) -> void: |
|
assert(is_process_running()) |
|
var index: int = device.index if device else -1 |
|
python_process.call_rpc_sync("set_video_device_number", [ index ]) |
|
|
|
# ----------------------------------------------------------------------------- |
|
# Functions to start/stop the TRACKER and receive packets coming from it. |
|
# ----------------------------------------------------------------------------- |
|
|
|
var base_port := 7098 |
|
var udp_server: PacketPeerUDP |
|
var udp_server_port: int |
|
|
|
func start_tracker() -> void: |
|
assert(!is_tracker_running()) |
|
|
|
udp_server = PacketPeerUDP.new() |
|
# Find a port number that's open to use. |
|
udp_server_port = base_port |
|
while udp_server.bind(udp_server_port, "127.0.0.1") != OK: |
|
udp_server_port += 1 |
|
|
|
python_process.call_rpc_sync("set_udp_port_number", [ udp_server_port ]) |
|
python_process.call_rpc_sync("start_tracker", []) |
|
|
|
func stop_tracker() -> void: |
|
if !is_tracker_running(): return # Do nothing if tracker isn't running. |
|
python_process.call_rpc_sync("stop_tracker", []) |
|
udp_server.close() |
|
udp_server = null |
|
|
|
func is_tracker_running() -> bool: |
|
return udp_server != null |
|
|
|
func receive_tracker_packets() -> void: |
|
assert(is_tracker_running()) |
|
while true: |
|
var bytes := udp_server.get_packet() |
|
if bytes.size() == 0: break |
|
var data = JSON.parse_string(bytes.get_string_from_utf8()) |
|
if data is Dictionary: process_tracker_data(data) |
|
# FIXME: Find out why we appear to always be processing 2 packets a frame. |
|
|
|
# ----------------------------------------------------------------------------- |
|
# Functions to PROCESS and CONVERT the incoming TRACKER DATA. |
|
# ----------------------------------------------------------------------------- |
|
|
|
func increase_last_received(delta: float) -> void: |
|
head.last_received += delta |
|
hands.left.last_received += delta |
|
hands.right.last_received += delta |
|
|
|
func process_tracker_data(data: Dictionary) -> void: |
|
if "error" in data: on_tracker_error(data.error); return |
|
if "status" in data: on_tracker_status(data.status); return |
|
|
|
# Convert the arrays inside data to known data types like Vector3 and Transform3D. |
|
data["face"]["transform"] = to_transform(data["face"]["transform"]) |
|
for side in data["hands"]: |
|
var hand = data["hands"][side] |
|
# Convert untyped array of arrays to typed Array[Vector3]. |
|
var image_landmarks = hand["image_landmarks"].map(to_vector) |
|
var world_landmarks = hand["world_landmarks"].map(to_vector) |
|
hand["image_landmarks"] = Array(image_landmarks, TYPE_VECTOR3, "", null) |
|
hand["world_landmarks"] = Array(world_landmarks, TYPE_VECTOR3, "", null) |
|
|
|
# Face matrix is in centimeters, convert to meters. |
|
data["face"]["transform"].origin /= 100 |
|
|
|
# NOTE: Face confidence currently either 0.0 or 1.0. |
|
if data["face"]["confidence"] > min_confidence_threshold: |
|
head.last_data = data["face"] |
|
head.last_received = 0.0 |
|
|
|
for side in hands: |
|
var hand = hands[side] |
|
var hand_data = data["hands"][side] |
|
if hand_data["confidence"] > min_confidence_threshold: |
|
var image_landmarks: Array[Vector3] = hand_data["image_landmarks"] |
|
var world_landmarks: Array[Vector3] = hand_data["world_landmarks"] |
|
|
|
# Mirror position on the X axis, since image landmarks are in view space. |
|
for i in image_landmarks.size(): image_landmarks[i].x = (1 - image_landmarks[i].x) |
|
# Unsure why, but world landmarks might be in a different coordinate system than expected? |
|
var rotation_fix := Basis(Vector3.RIGHT, TAU / 2) |
|
for i in world_landmarks.size(): world_landmarks[i] = rotation_fix * world_landmarks[i] |
|
|
|
hand.last_data = hand_data |
|
hand.last_received = 0.0 |
|
|
|
func on_tracker_status(status: String) -> void: |
|
set_status(status) |
|
|
|
func on_tracker_error(error: String) -> void: |
|
print_log("Error: " + error) |
|
|
|
func to_vector(array) -> Vector3: |
|
return Vector3(array[0], array[1], array[2]) |
|
|
|
func to_transform(matrix) -> Transform3D: |
|
return Transform3D( |
|
Basis(Vector3(matrix[0][0], matrix[1][0], matrix[2][0]), |
|
Vector3(matrix[0][1], matrix[1][1], matrix[2][1]), |
|
Vector3(matrix[0][2], matrix[1][2], matrix[2][2])), |
|
Vector3(matrix[0][3], matrix[1][3], matrix[2][3])) |
|
|
|
# ----------------------------------------------------------------------------- |
|
# Functions for updating VISUAL TRACKERS and THE MODEL itself. |
|
# ----------------------------------------------------------------------------- |
|
|
|
func update_visual_trackers(delta: float) -> void: |
|
if head.last_received >= time_to_rest: |
|
# Reset to rest pose transform. |
|
head.tracker.transform = fi_slerp(head.tracker.transform, |
|
head.rest_pose, rest_interpolation_factor, delta) |
|
else: |
|
head.tracker.transform = fi_slerp(head.tracker.transform, |
|
head.last_data["transform"], interpolation_factor, delta) |
|
|
|
# TODO: Don't automatically trust the handedness of the input data. |
|
for side in hands: |
|
var hand = hands[side] |
|
if hand.last_received >= time_to_rest: |
|
# Reset to rest pose transform. |
|
hand.tracker.transform = fi_slerp(hand.tracker.transform, |
|
hand.rest_pose, rest_interpolation_factor, delta) |
|
else: |
|
var image_landmarks: Array[Vector3] = hand.last_data["image_landmarks"] |
|
var world_landmarks: Array[Vector3] = hand.last_data["world_landmarks"] |
|
|
|
var hand_rotation := get_hand_rotation(side, world_landmarks) |
|
var hand_origin := get_hand_viewspace_origin(image_landmarks, world_landmarks, 2.0) \ |
|
* Vector3(7.0, 7.0, 3.5) # FIXME: Fudge factor to match better with world space. |
|
|
|
var target_transform := Transform3D(hand_rotation, hand_origin) |
|
hand.tracker.transform = fi_slerp(hand.tracker.transform, |
|
target_transform, interpolation_factor, delta) |
|
|
|
# Translate landmarks so the origin is at the wrist. |
|
var wrist_position := world_landmarks[0] |
|
# World landmarks are in world space, so we have to "subtract" the hand rotation. |
|
for i in world_landmarks.size(): |
|
var pos := world_landmarks[i] - wrist_position |
|
hand.landmarks[i].position = hand_rotation.inverse() * pos |
|
|
|
func update_ik_chains() -> void: |
|
for chain in ik_chains: |
|
chain.do_ik_chain() |
|
|
|
func update_blendshapes() -> void: |
|
var model := get_model() |
|
if (not model) or (not head.last_data): return |
|
var data: Dictionary = head.last_data.blendshapes |
|
|
|
var shape_dict: Dictionary |
|
match blendshape_mode: |
|
BlendshapeMode.MEDIA_PIPE: shape_dict = data |
|
BlendshapeMode.VRM_STANDARD: shape_dict = \ |
|
Blendshapes.convert_mediapipe_shapes_to_vrm_standard(data) |
|
|
|
# TODO: Blendshapes.apply_smoothing(...) |
|
Blendshapes.fixup_eyes(shape_dict) |
|
Blendshapes.apply_animations(model, shape_dict) |
|
|
|
# ----------------------------------------------------------------------------- |
|
# Utility functions, currently only relating to update_visual_trackers. |
|
# ----------------------------------------------------------------------------- |
|
|
|
# Indices of hand landmarks. |
|
const WRIST := 0 |
|
const THUMB_CMC := 1 |
|
const THUMB_MCP := 2 |
|
const THUMB_IP := 3 |
|
const THUMB_TIP := 4 |
|
const INDEX_FINGER_MCP := 5 |
|
const INDEX_FINGER_PIP := 6 |
|
const INDEX_FINGER_DIP := 7 |
|
const INDEX_FINGER_TIP := 8 |
|
const MIDDLE_FINGER_MCP := 9 |
|
const MIDDLE_FINGER_PIP := 10 |
|
const MIDDLE_FINGER_DIP := 12 |
|
const MIDDLE_FINGER_TIP := 13 |
|
const RING_FINGER_MCP := 14 |
|
const RING_FINGER_PIP := 15 |
|
const RING_FINGER_DIP := 16 |
|
const RING_FINGER_TIP := 17 |
|
const PINKY_MCP := 18 |
|
const PINKY_PIP := 19 |
|
const PINKY_DIP := 20 |
|
const PINKY_TIP := 21 |
|
|
|
## Calculate the hand rotation from the hand tracking's world landmarks. |
|
func get_hand_rotation(side: String, landmarks: Array[Vector3]) -> Basis: |
|
var knuckles_center := (landmarks[INDEX_FINGER_MCP] + landmarks[RING_FINGER_TIP]) / 2 |
|
var wrist_to_knuckles := landmarks[WRIST].direction_to(knuckles_center) |
|
var towards_thumb := landmarks[RING_FINGER_TIP].direction_to(landmarks[INDEX_FINGER_MCP]) |
|
|
|
var palm_forward: Vector3 |
|
if side == "left": palm_forward = towards_thumb.cross(wrist_to_knuckles) |
|
if side == "right": palm_forward = wrist_to_knuckles.cross(towards_thumb) |
|
|
|
return Basis.looking_at(palm_forward, wrist_to_knuckles) |
|
|
|
## Attempt to figure out the hand origin in viewspace. |
|
## `hand_to_head_scale` is a fudge value so that we can attempt |
|
## to force the hand and head into the same scale range, roughly. |
|
func get_hand_viewspace_origin( |
|
image_landmarks: Array[Vector3], |
|
_world_landmarks: Array[Vector3], # unused |
|
hand_to_head_scale: float, |
|
) -> Vector3: |
|
# Values found through experimentation. |
|
var known_distances := [ |
|
[ WRIST , THUMB_CMC , 0.053861 ], |
|
[ THUMB_CMC , THUMB_MCP , 0.057096 ], |
|
[ THUMB_MCP , THUMB_IP , 0.048795 ], |
|
[ THUMB_IP , THUMB_TIP , 0.039851 ], |
|
[ WRIST , INDEX_FINGER_MCP , 0.152538 ], |
|
[ WRIST , RING_FINGER_TIP , 0.138711 ], |
|
[ INDEX_FINGER_MCP , MIDDLE_FINGER_MCP , 0.029368 ], |
|
[ MIDDLE_FINGER_MCP , MIDDLE_FINGER_TIP , 0.027699 ], |
|
[ MIDDLE_FINGER_TIP , RING_FINGER_TIP , 0.032673 ], |
|
] |
|
# FIXME: Hardcoded fudge-factor |
|
for d in known_distances: d[2] *= 0.25 |
|
|
|
# Iterate through known distances and add up the weighted average. |
|
var fake_z_avg := 0.0 |
|
var total_avg_weight := 0.0 |
|
for d in known_distances: |
|
var pt0 := image_landmarks[d[0]] |
|
var pt1 := image_landmarks[d[1]] |
|
|
|
# Figure out a weighted average based on how much the vector |
|
# is facing the camera Z axis. Stuff facing into the camera |
|
# has less accurate results, so weight it lower. |
|
var normvec := (pt0 - pt1).normalized() |
|
var weight := clampf(1.0 - 2.0 * abs(normvec[2]), 0.0, 1.0) |
|
|
|
# Add to the average. |
|
fake_z_avg += guess_depth_from_known_distance( |
|
pt0, pt1, d[2] / hand_to_head_scale) * weight |
|
total_avg_weight += weight |
|
|
|
if abs(total_avg_weight) < 0.000001: |
|
print("HEY THE THING HAPPENED", total_avg_weight) |
|
# FIXME: Fudge value because I'm tired of this thing throwing |
|
# exceptions all the time. Do an actual fix later. |
|
total_avg_weight = 0.01 |
|
|
|
# Finish the average. |
|
fake_z_avg = fake_z_avg / total_avg_weight |
|
|
|
return ndc_to_viewspace(image_landmarks[0], -fake_z_avg) |
|
|
|
## Figure out a depth value based on the distance between known |
|
## normalized (clip-space) coordinates of landmarks, compared to what |
|
## we would expect the average distance between those points to be. |
|
func guess_depth_from_known_distance(left: Vector3, right: Vector3, distance: float) -> float: |
|
var dist_clip := left - right |
|
dist_clip.x *= camera_aspect_ratio # FIXME: Fudge factor |
|
return 1.0 / (dist_clip.length() / distance) |
|
|
|
func ndc_to_viewspace(v: Vector3, z_offset: float) -> Vector3: |
|
# This (px, py) is pretty important and Google's |
|
# documentation didn't give much useful info about it. |
|
var px := 0.5 |
|
var py := 0.5 |
|
|
|
# These default to 1.0, 1.0 according to Google's docs. |
|
# I guess that's probably fine for default camera stuff. |
|
var fx := 1.0 |
|
var fy := camera_aspect_ratio |
|
|
|
# Inverse equation from the section on NDC space here |
|
# https://google.github.io/mediapipe/solutions/objectron.html#coordinate-systems |
|
# https://web.archive.org/web/20220727063132/https://google.github.io/mediapipe/solutions/objectron.html#coordinate-systems |
|
# which describes going from camera coordinates to NDC space. It's kinda |
|
# ambiguous on terms, but this seems to work to get view space coordinates. |
|
|
|
# With this, coordinates seem to be evenly scaled (between x/y and z) and in view space. |
|
var z_scale := 1.0 |
|
var z := 1.0 / (-v[2] + (1.0 / z_offset) * z_scale) |
|
var x := (v[0] - px) * z / fx |
|
var y := (v[1] - py) * z / fy |
|
return Vector3(x, y, z) |
|
|
|
## Smoothly interpolates transforms in a framerate-independent way. |
|
## For example, using a factor of 0.2, will move roughly 80% of the remaining distance in a second. |
|
func fi_slerp(value: Transform3D, target: Transform3D, factor: float, delta: float) -> Transform3D: |
|
return value.interpolate_with(target, 1 - factor ** delta)
|
|
|